• Title/Summary/Keyword: Inducer

Search Result 619, Processing Time 0.024 seconds

Hydrodynamic Performance Test of a Turbopump (터보펌프의 수력 성능시험)

  • Hong Soon-Sam;Kim Dae-Jin;Kim Jin-Sun;Choi Chang-Ho;Kim Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.18-22
    • /
    • 2006
  • Hydrodynamic performance test was conducted for a fuel pump of a liquid rocket engine turbopump. The pump driven by an electric motor was tested using water. It is experimentally shown that the inducer had very small effect on the pump's head and efficiency but great effect on the pump's cavitation performance. Additionally, inducer test was carried out to investigate the effect of the inducer on the pump in detail, and it was found that the pump reached a critical cavitation number when the inducer head dropped by 55%.

Characteristics and prediction of the cavitation inception in a turbopump inducer (터보펌프 인듀서에서 캐비테이션 시작점의 특성 및 예측에 관한 연구)

  • Kang, Byung Yun;Kim, Dae-Jin;Choi, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1077-1079
    • /
    • 2017
  • The cavitation in the turbopump inducer progresses from the inception to the critical point, and finally develops to a breakdown which sharply declined in head. In this paper, we evaluated characteristics and predicted empirical equations about the cavitation inception of a turbopump inducer. The empirical equation of the cavitation inception for the elliptical plate was relatively well predicted to the turbopump inducer. However, in case of the marine propeller, it showed a big difference due to Reynolds number under the operating point.

  • PDF

Measurement of Reynolds Number Effects on Cavitation Performance in a Turbopump Inducer (레이놀즈 수가 터보펌프 인듀서 캐비테이션 성능에 미치는 영향 측정)

  • Kim, Junho;Song, Seung Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.820-823
    • /
    • 2017
  • This study experimentally investigate how the Reynolds number affect cavitation performance in a turbopump inducer using water. Cavitation performance has been determined by the static pressure measured at the inlet of the inducer. Reynolds number has been varied by varying water temperature and inducer rotational speed to maintain constant non-dimensional thermal parameter. At low non-dimensional thermal parameter, the critical cavitation number is insensitive to Reynolds number. However, at high non-dimensional thermal parameter, the critical cavitation number increased as Reynolds number increases. Thus, cavitation performance is deteriorated as Reynolds number increases when thermal effect exists.

  • PDF

Characteristics and Predictions of the Cavitation Inception in a Turbopump Inducer (터보펌프 인듀서에서 캐비테이션 시작점의 특성 및 예측에 관한 연구)

  • Kang, Byung Yun;Kim, Dae-Jin;Choi, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.93-100
    • /
    • 2019
  • The cavitation of a turbopump inducer develops from the inception to a critical point, and encounters breakdown finally. In this study, we evaluated the characteristics and predictions of cavitation inception for the turbopump inducer using empirical equations. The empirical equation for the elliptical plate predicted the generation of cavitation inception of the turbopump inducer relatively well. However, in case of the marine propeller, it showed a considerable difference owing to the Reynolds number of the operating point. The cavitation inception occurred earlier as the number of blades increased. However, the solidity had no major impact on the cavitation inception because the cavitation occurred locally at the tip of the leading edge.

Hydraulic design of fuel pump in turbo-pump system and performance evaluation using CFD (터보펌프용 연료펌프의 설계와 CFD를 이용한 성능 평가)

  • Lee, Kyoung-Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.408-416
    • /
    • 2002
  • Hydraulic performance of the pump with an inducer was predicted by 3-D Navier-stokes calculation. The evaluated pump was the single-stage centrifugal pump with a separated inducer to pressurize fuel (LCH4) in Turbo-pump system with a specific speed (Ns) of approximately 0.3[rad/s, m3/s, J/kg] and a suction specific speed(s) of 15[rad/s, m3/s, J/kg]. That conventional pump was designed with the combination of 1-D theory and empirical correlation. In this study, preliminary design to select key parameters such as inlet flow coefficient was reviewed by investigating sets of the known design methods to achieve appropriate suction performance, and the performance of newly designed inducer and impeller was compared with the old one, using CFD method. The numerical results showed that the hydraulic efficiency of the new pump was predicted $5.5\%$ higher than that of the conventional one, through design parameter re-selection, configuration improvement and blade loading control

  • PDF

Studies on Cellulase Induction in Myriococcum albomyces (Myriococcum albomyces에 있어서 Cellulase 유도생성에 관한 연구)

  • Chung, Dong-Hyo
    • Korean Journal of Food Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 1971
  • 1. Formation of cellulase in Myriococcum albomyces was investigated using shaking culture with addition of CMC or Avicel as an inducer to 5% wheat bran medium. 2. Three different types of cellulase fraction I, fraction II and fraction III in the culture filtrate were purified by elution column chromatography on a DEAE-Sephadex A-25. 3. By the addition of CMC as an inducer, CMCase activity was stronger than that of Avicelase. On the other hand, the addition of Avicel increased Avicelase activity.

  • PDF

NUMERICAL STUDY ON THE TURBOPUMP INDUCER (터보펌프 인듀서에 대한 수치해석적 연구)

  • Noh Jun-Gu;Choi Chang-Ho;Hong Soon-Sam;Kim Jinhan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.299-303
    • /
    • 2005
  • The present study focuses on the flow analysis of a turbopump inducer by performing both numerical and experimental methods. The head rise, efficiency and detailed flow fields such as outlet flow angles, pressure and velocity vectors are measured and compared with the computational data. Generally a good agreement is obtained between numerical and experimental results. However, some discrepancies are observed due to complex flow structures inside the inducer. Future calculations with an advanced turbulence model and a dense computational grid needs to be performed to obtain accurate numerical solution for the detailed flow fields.

  • PDF

The Effect of the Diameter and Rotational Velocity on the Cavitation Performance of a Turbopump Inducer (터보펌프 인듀서의 흡입성능에 대한 직경과 회전속도의 영향)

  • Sohn, Dong-Kee;Koo, Hyun-Chul;Cha, Bong-Jun;Yang, Soo-Seok;Lee, Dae-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.27-32
    • /
    • 2002
  • The turbopump inducer cavitation is very important for the success of a liquid rocket engine. In this study, the performance test and cavitation performance test were carried out at various rotational speeds with two inducers of different diameter. The rotational speed was varied by 4000, 6000, and 8000 rpm, and the size effect was tested for the normal inducer and twice-enlarged one. The hydraulic performance results showed that the similarity was satisfied over the entire test range of the present study. The blade thickness effect was examined and showed that the increased blade thickness resulted in decreased efficiency and worse cavitation performance for the large tip clearance. The cavitation performance test results showed that the breakdown NPSH increased as the flow coefficient, and was not affected by the rotational speed.

Meanline Performance Analysis of a Fuel Pump for a Turbopump System (터보펌프용 연료펌프의 평균유선 성능해석)

  • Yoon, Eui-Soo;Choi, Bun-Seog;Park, Moo-Ryong;Rhi, Seok-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.33-41
    • /
    • 2002
  • Low NPSH and high pressure pumps we widely used for turbopump systems, which have an inducer and operate at high rotating speeds. In this paper, a meanline method has been established for the preliminary design and performance prediction of pumps having an inducer for cavitating or non-cavitating conditions at design or off-design points. The method was applied for the performance prediction of a fuel pump. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute.

The Effect of the Diameter and Rotational Velocity on the Cavitation Performance of a Turbopump Inducer (터보펌프 인듀서의 흡입성능에 대한 직경과 회전속도의 영향)

  • Sohn, Dong Kee;Koo, Hyun Chul;Cha, Bong Jun;Yang, Soo Seok;Lee, Dae Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.229-234
    • /
    • 2001
  • The turbopump inducer cavitation is very important for the success of a Liquid rocket engine. In this study the performance test and cavitation performance test were carried out at various rotational speed with two different diameter inducers. The rotational speed were varied 4000, 6000, 8000 rpm and the variation to the diameter of an inducer were taken as design size and 2 times enlarged size. The major results of the present study were as follows. 1. The hydraulic performance results showed that the similarity was met over the entire test range of the present study. 2. The blade thickness effect was examined and showed that the increased blade thickness resulted in decreased efficiency and worse cavitation performance for large tip clearance. 3. The cavitation performance test results showed that the breakdown NPSH increases as the flow coefficient and does not affected by the rotational speed.

  • PDF