• Title/Summary/Keyword: Induced shock wave

Search Result 92, Processing Time 0.022 seconds

Application of Superfluid Shock Tube Facility to experiment of High Reynolds number flow (초유동 충격파관 장치의 고레이놀즈수 유동실험에의 응용)

  • ;H. Nagai;Y. Ueta;K. Yanaka;M. Murakami
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.27-30
    • /
    • 2002
  • The particle velocity in superfluid helium (He II) induced by a gas dynamic shock wave impingement onto He II free surface were studied experimentally by using Schlieren visualization method with an ultra-high speed video camera. It is found form visualization results that a dark zone in the immediate vicinity of the vapor-He II interface region is formed because of the high compressibility of He II and is developed toward bulk He II with the flowing-down speed of the vapor-He II interface. The mass velocity behind a transmitted compression shock wave that is equal to the contraction speed of He II amounts to 10 m/sec, the Reynolds number of which reaches $10^{7}$. This fact suggests that the superfluid shock tube facility can be applied to an experimental facility for high Reynols number flow as an alternative to the superfluid wind tunnel.

  • PDF

Stress Wave Reduction of Structures Using MR Inserts (MR Insert를 이용한 구조물의 응력파 저감)

  • 강병우;김재환;최승복;김경수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.71-77
    • /
    • 2001
  • In this paper, stress wave propagation characteristics of MR(Magneto-rheological) inserts are experimentally investigated. Generally, stress waves of structures such as warships or submarines are induced by shock waves from underwater explosion. Their fatal effects on the shipboard equipments or structures damage the performance of warships. But, such a problem can be solved by controlling the stress waves propagating through structures by means of MR inserts. MR insert consists of two aluminum layers and MR fluid filled in between. Two piezoceramic disks are embedded on the host plate as a transmitter and a receiver of stress waves. Pulse waves are generated by the transmitter and they reach to the receiver through the MR insert. Permanent magnet and magnetic coil are used to produce magnetic field at the MR insert. In the presence of magnetic field, MR particles are arranged in chains parallel to the magnetic field such that the transmitted stress waves are reduced. Attenuation of stress waves is experimentally investigated.

  • PDF

Reflection of Plane Shock Wave over Concave and Convex Walls (오목, 볼록면에서 평면충격파의 반사)

  • JEON, Heung-Kyun;KWON, Jin-Kyung;KWON, Soon-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1473-1480
    • /
    • 1999
  • In the case of Impingement of plane moving shock wave over concave or convex double wedges (pseudo-stationary flow) and cylindrical walls (truly non-stationary flow), it Is expected that there are transitions from regular reflection to Mach reflection or vice versa In shock wave reflections. In these connections, it is necessary to verify the various of reflection process and transition angle for the reflection problems In double wedges, and to verify the transition angle, effects of curvature radius and initial wall angle on it for the reflection problems In cylindrical walls. Especially, we focused our attention to confirm the existence of hysteresis phenomenon induced by the different transition processes, and Neumann paradox, which is a small discrepancy between theoretical and experimental transition angles. Experiments were carried out by using the shock tube of $6{\times}6cm^2$, and high speed photographic technique consisted of delay unit, triggering system, light source of Xe lamp and so on was used for flow visualization.

Time-Dependent Characteristics of the Nonequilibrium Condensation in Subsonic Flows

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Toshiaki Setoguchi;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1511-1521
    • /
    • 2002
  • High-speed moist air or steam flow has long been of important subject in engineering and industrial applications. Of many complicated gas dynamics problems involved in moist air flows, the most challenging task is to understand the nonequilibrium condensation phenomenon when the moist air rapidly expands through a flow device. Many theoretical and experimental studies using supersonic wind tunnels have devoted to the understanding of the nonequilibrium condensation flow physics so far. However, the nonequilibrium condensation can be also generated in the subsonic flows induced by the unsteady expansion waves in shock tube. The major flow physics of the nonequilibrium condensation in this application may be different from those obtained in the supersonic wind tunnels. In the current study, the nonequilibrium condensation phenomenon caused by the unsteady expansion waves in a shock tube is analyzed by using the two-dimensional, unsteady, Navier-Stokes equations, which are fully coupled with a droplet growth equation. The third-order TVD MUSCL scheme is applied to solve the governing equation systems. The computational results are compared with the previous experimental data. The time-dependent behavior of nonequilibrium condensation of moist air in shock tube is investigated in details. The results show that the major characteristics of the nonequilibrium condensation phenomenon in shock tube are very different from those in the supersonic wind tunnels.

Investingation of Laser Shock Wave Cleaning with Different Particle Condition (오염 입자 상태에 따른 레이저 충격파 클리닝 특성 고찰)

  • 강영재;이종명;이상호;박진구;김태훈
    • Laser Solutions
    • /
    • v.6 no.3
    • /
    • pp.29-35
    • /
    • 2003
  • In semiconductor processing, there are two types of particle contaminated onto the wafer, i.e. dry and wet state particles. In order to evaluate the cleaning performance of laser shock wave cleaning method, the removal of 1 m sized alumina particle at different particle conditions from silicon wafer has been carried out by laser-induced shock waves. It was found that the removal efficiency by laser shock cleaning was strongly dependent on the particle condition, i.e. the removal efficiency of dry alumina particle from silicon wafer was around 97% while the efficiencies of wet alumina particle in DI water and IPA are 35% and 55% respectively. From the analysis of adhesion forces between the particle and the silicon substrate, the adhesion force of the wet particle where capillary force is dominant is much larger than that of the dry particle where Van der Waals force is dominant. As a result, it is seen that the particle in wet condition is much more difficult to remove from silicon wafer than the particle in dry condition by using physical cleaning method such as laser shock cleaning.

  • PDF

Investigation on the shock-induced rocket separation from the mother plane (충격파에 의한 비정상 모선분리 현상 연구)

  • Kim Y. S.;Ji Y. M.;Lee J.-W.;Park J. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.155-160
    • /
    • 2004
  • This paper describes a supersonic separation of air-launching rocket from the mother plane. Three dimensional Euler equations were numerically solved to analyze steady/unsteady state fluid flows. To solve the Euler equations, named CFD-FASTRAN that is commercial computation code. The results of simulation clearly demonstrate effect of shock-expansion wave interaction between the rocket and the mother plane. Moreover, important influential factors at separating stage of the rocket were extracted with a comprehensive analysis. Finally, from the consideration of supersonic-separation, a guideline to safety-separation is given to the design of supersonic air-launching rocket.

  • PDF