• Title/Summary/Keyword: Induced pluripotent stem cell

Search Result 87, Processing Time 0.019 seconds

Current Progress and Prospects of Reprogramming Factors - Stem Cells vs Germ Cells - (줄기세포와 생식세포에서 리프로그래밍 인자에 대한 최근 연구 동향과 전망)

  • Seo, You-Mi;Lee, Kyung-Ah
    • Development and Reproduction
    • /
    • v.14 no.2
    • /
    • pp.43-50
    • /
    • 2010
  • Recently induced pluripotent stem (iPS) cells are derived from somatic cells by ectopic expression of several transcription factors (reprogramming factors) using technology of somatic cell reprogramming. iPS cells are able to selfrenew and differentiate into all type of cells in the body similarly to embryonic stem cells. Because iPS cells have advantages that can avoid immune rejection after transplantation and ethical issues unlike embryonic stem cells, research on iPS has made significant progress since the first report by Yamanaka in 2006. Nevertheless of many advantages of iPS, safer methods to introduce reprogramming factors into somatic cells must be developed due to safety concerns regarding viral vectors, and safer reprogramming factors to substitute the oncogenes should be evaluated for clinical application of iPS. Here we discuss the recent progress in reprogramming factors in embryonic stem cells, oocytes, and embryos, and discuss further research for finding new, more reliable and safer reprogramming factors.

Recent advances in stem cell therapeutics and tissue engineering strategies

  • Kwon, Seong Gyu;Kwon, Yang Woo;Lee, Tae Wook;Park, Gyu Tae;Kim, Jae Ho
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.311-318
    • /
    • 2018
  • Background: Tissue regeneration includes delivering specific types of cells or cell products to injured tissues or organs for restoration of tissue and organ function. Stem cell therapy has drawn considerable attention since transplantation of stem cells can overcome the limitations of autologous transplantation of patient's tissues; however, it is not perfect for treating diseases. To overcome the hurdles associated with stem cell therapy, tissue engineering techniques have been developed. Development of stem cell technology in combination with tissue engineering has opened new ways of producing engineered tissue substitutes. Several studies have shown that this combination of tissue engineering and stem cell technologies enhances cell viability, differentiation, and therapeutic efficacy of transplanted stem cells. Main body: Stem cells that can be used for tissue regeneration include mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells. Transplantation of stem cells alone into injured tissues exhibited low therapeutic efficacy due to poor viability and diminished regenerative activity of transplanted cells. In this review, we will discuss the progress of biomedical engineering, including scaffolds, biomaterials, and tissue engineering techniques to overcome the low therapeutic efficacy of stem cells and to treat human diseases. Conclusion: The combination of stem cell and tissue engineering techniques overcomes the limitations of stem cells in therapy of human diseases, and presents a new path toward regeneration of injured tissues.

Generation of Induced Pluripotent Stem Cells from Lymphoblastoid Cell Lines by Electroporation of Episomal Vectors

  • Myunghyun Kim;Junmyeong Park;Sujin Kim;Dong Wook Han;Borami Shin;Hans Robert Scholer;Johnny Kim;Kee-Pyo Kim
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • Background and Objectives: Lymphoblastoid cell lines (LCLs) deposited from disease-affected individuals could be a valuable donor cell source for generating disease-specific induced pluripotent stem cells (iPSCs). However, generation of iPSCs from the LCLs is still challenging, as yet no effective gene delivery strategy has been developed. Methods and Results: Here, we reveal an effective gene delivery method specifically for LCLs. We found that LCLs appear to be refractory toward retroviral and lentiviral transduction. Consequently, lentiviral and retroviral transduction of OCT4, SOX2, KFL4 and c-MYC into LCLs does not elicit iPSC colony formation. Interestingly, however we found that transfection of oriP/EBNA-1-based episomal vectors by electroporation is an efficient gene delivery system into LCLs, enabling iPSC generation from LCLs. These iPSCs expressed pluripotency makers (OCT4, NANOG, SSEA4, SALL4) and could form embryoid bodies. Conclusions: Our data show that electroporation is an effective gene delivery method with which LCLs can be efficiently reprogrammed into iPSCs.

Kidney Organoid Derived from Human Pluripotent and Adult Stem Cells for Disease Modeling

  • Hyun Mi Kang
    • Development and Reproduction
    • /
    • v.27 no.2
    • /
    • pp.57-65
    • /
    • 2023
  • Kidney disease affects a significant portion of the global population, yet effective therapies are lacking despite advancements in identifying genetic causes. This limitation can be attributed to the absence of adequate in vitro models that accurately mimic human kidney disease, hindering targeted therapeutic development. However, the emergence of human induced pluripotent stem cells (PSCs) and the development of organoids using them have opened up a way to model kidney development and disease in humans, as well as validate the effects of new drugs. To fully leverage their capabilities in these fields, it is crucial for kidney organoids to closely resemble the structure and functionality of adult human kidneys. In this review, we aim to discuss the potential of using human PSCs or adult kidney stem cell-derived kidney organoids to model genetic kidney disease and renal cancer.

Ganglioside GM1 influences the proliferation rate of mouse induced pluripotent stem cells

  • Ryu, Jae-Sung;Chang, Kyu-Tae;Lee, Ju-Taek;Lim, Malg-Um;Min, Hyun-Ki;Na, Yoon-Ju;Lee, Su-Bin;Moussavou, Gislain;Kim, Sun-Uk;Kim, Ji-Su;Ko, Kinarm;Ko, Kisung;Hwang, Kyung-A;Jeong, Eun-Jeong;Lee, Jeong-Woong;Choo, Young-Kug
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.713-718
    • /
    • 2012
  • Gangliosides play important roles in the control of several biological processes, including proliferation and transmembrane signaling. In this study, we demonstrate the effect of ganglioside GM1 on the proliferation of mouse induced pluripotent stem cells (miPSCs). The proliferation rate of miPSCs was lower than in mouse embryonic stem cells (mESCs). Fluorescence activated cell sorting analysis showed that the percentage of cells in the G2/M phase in miPSCs was lower than that in mESCs. GM1 was expressed in mESCs, but not miPSCs. To confirm the role of GM1 in miPSC proliferation, miPSCs were treated with GM1. GM1-treated miPSCs exhibited increased cell proliferation and a larger number of cells in the G2/M phase. Furthermore, phosphorylation of mitogen-activated protein kinases was increased in GM1-treated miPSCs.

Systemic and Cell-Type Specific Profiling of Molecular Changes in Parkinson's Disease

  • Lee, Yunjong
    • Interdisciplinary Bio Central
    • /
    • v.4 no.3
    • /
    • pp.6.1-6.12
    • /
    • 2012
  • Parkinson's disease (PD) is a complicated neurodegenerative disorder although it is oftentimes defined by clinical motor symptoms originated from age dependent and progressive loss of dopaminergic neurons in the midbrain. The pathogenesis of PD involves dopaminergic and nondopaminergic neurons in many brain regions and the molecular mechanisms underlying the death of different cell types still remain to be elucidated. There are indications that PD causing disease processes occur in a global scale ranging from DNA to RNA, and proteins. Several PD-associated genes have been reported to play diverse roles in controlling cellular functions in different levels, such as chromatin structure, transcription, processing of mRNA, translational modulation, and posttranslational modification of proteins. The advent of quantitative high throughput screening (HTS) tools makes it possible to monitor systemic changes in DNA, RNA and proteins in PD models. Combined with dopamine neuron isolation or derivation of dopamine neurons from PD patient specific induced pluripotent stem cells (PD iPSCs), HTS techonologies will provide opportunities to draw PD causing sequences of molecular events in pathologically relevant PD samples. Here I discuss previous studies that identified molecular functions in which PD genes are involved, especially those signaling pathways that can be efficiently studied using HTS methodologies. Brief descriptions of quantitative and systemic tools looking at DNA, RNA and proteins will be followed. Finally, I will emphasize the use and potential benefits of PD iPSCs-derived dopaminergic neurons to screen signaling pathways that are initiated by PD linked gene mutations and thus causative for dopaminergic neurodegneration in PD.

Characterizing Organelles in Live Stem Cells Using Label-Free Optical Diffraction Tomography

  • Kim, Youngkyu;Kim, Tae-Keun;Shin, Yeonhee;Tak, Eunyoung;Song, Gi-Won;Oh, Yeon-Mok;Kim, Jun Ki;Pack, Chan-Gi
    • Molecules and Cells
    • /
    • v.44 no.11
    • /
    • pp.851-860
    • /
    • 2021
  • Label-free optical diffraction tomography (ODT), an imaging technology that does not require fluorescent labeling or other pre-processing, can overcome the limitations of conventional cell imaging technologies, such as fluorescence and electron microscopy. In this study, we used ODT to characterize the cellular organelles of three different stem cells-namely, human liver derived stem cell, human umbilical cord matrix derived mesenchymal stem cell, and human induced pluripotent stem cell-based on their refractive index and volume of organelles. The physical property of each stem cell was compared with that of fibroblast. Based on our findings, the characteristic physical properties of specific stem cells can be quantitatively distinguished based on their refractive index and volume of cellular organelles. Altogether, the method employed herein could aid in the distinction of living stem cells from normal cells without the use of fluorescence or specific biomarkers.

Investigating the role of Sirtuins in cell reprogramming

  • Shin, Jaein;Kim, Junyeop;Park, Hanseul;Kim, Jongpil
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.500-507
    • /
    • 2018
  • Cell reprogramming has been considered a powerful technique in the regenerative medicine field. In addition to diverse its strengths, cell reprogramming technology also has several drawbacks generated during the process of reprogramming. Telomere shortening caused by the cell reprogramming process impedes the efficiency of cell reprogramming. Transcription factors used for reprogramming alter genomic contents and result in genetic mutations. Additionally, defective mitochondria functioning such as excessive mitochondrial fission leads to the limitation of pluripotency and ultimately reduces the efficiency of reprogramming. These problems including genomic instability and impaired mitochondrial dynamics should be resolved to apply cell reprograming in clinical research and to address efficiency and safety concerns. Sirtuin (NAD+-dependent histone deacetylase) has been known to control the chromatin state of the telomere and influence mitochondria function in cells. Recently, several studies reported that Sirtuins could control for genomic instability in cell reprogramming. Here, we review recent findings regarding the role of Sirtuins in cell reprogramming. And we propose that the manipulation of Sirtuins may improve defects that result from the steps of cell reprogramming.

Stage specific transcriptome profiles at cardiac lineage commitment during cardiomyocyte differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Han, Jin
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.464-469
    • /
    • 2021
  • Cardiomyocyte differentiation occurs through complex and finely regulated processes including cardiac lineage commitment and maturation from pluripotent stem cells (PSCs). To gain some insight into the genome-wide characteristics of cardiac lineage commitment, we performed transcriptome analysis on both mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs) at specific stages of cardiomyocyte differentiation. Specifically, the gene expression profiles and the protein-protein interaction networks of the mESC-derived platelet-derived growth factor receptor-alpha (PDGFRα)+ cardiac lineage-committed cells (CLCs) and hiPSC-derived kinase insert domain receptor (KDR)+ and PDGFRα+ cardiac progenitor cells (CPCs) at cardiac lineage commitment were compared with those of mesodermal cells and differentiated cardiomyocytes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the genes significantly upregulated at cardiac lineage commitment were associated with responses to organic substances and external stimuli, extracellular and myocardial contractile components, receptor binding, gated channel activity, PI3K-AKT signaling, and cardiac hypertrophy and dilation pathways. Protein-protein interaction network analysis revealed that the expression levels of genes that regulate cardiac maturation, heart contraction, and calcium handling showed a consistent increase during cardiac differentiation; however, the expression levels of genes that regulate cell differentiation and multicellular organism development decreased at the cardiac maturation stage following lineage commitment. Additionally, we identified for the first time the protein-protein interaction network connecting cardiac development, the immune system, and metabolism during cardiac lineage commitment in both mESC-derived PDGFRα+ CLCs and hiPSC-derived KDR+PDGFRα+ CPCs. These findings shed light on the regulation of cardiac lineage commitment and the pathogenesis of cardiometabolic diseases.

Patient-specific pluripotent stem cell-based Parkinson's disease models showing endogenous alpha-synuclein aggregation

  • Oh, Yohan
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.349-359
    • /
    • 2019
  • After the first research declaring the generation of human induced pluripotent stem cells (hiPSCs) in 2007, several attempts have been made to model neurodegenerative disease in vitro during the past decade. Parkinson's disease (PD) is the second most common neurodegenerative disorder, which is mainly characterized by motor dysfunction. The formation of unique and filamentous inclusion bodies called Lewy bodies (LBs) is the hallmark of both PD and dementia with LBs. The key pathology in PD is generally considered to be the alpha-synuclein (${\alpha}$-syn) accumulation, although it is still controversial whether this protein aggregation is a cause or consequence of neurodegeneration. In the present work, the recently published researches which recapitulated the ${\alpha}$-syn aggregation phenomena in sporadic and familial PD hiPSC models were reviewed. Furthermore, the advantages and potentials of using patient-derived PD hiPSC with focus on ${\alpha}$-syn aggregation have been discussed.