• Title/Summary/Keyword: Induced coupled plasma

Search Result 103, Processing Time 0.026 seconds

저온 Plasma를 이용한 Poly(ethylene terephthalate)에의 Acrylic Acid의 기상 Graft 공중합 반응(I) (The Graft Polymerization of Acrylic Acid in Vapour Phase onto Poly(ethylene terephthalate) by Cold Plasma Part (I))

  • 천태일;최석철;모상영
    • 한국염색가공학회지
    • /
    • 제1권1호
    • /
    • pp.7-18
    • /
    • 1989
  • The distinguishing characteristic of the glow discharge is that chemical reaction induced by partially ionized gases are limited only to the substrate surface. Most studies have been done on the plasma etching and polymerization. The graft polymerization in vapour phase by cold plasma has been rarely investigated. In this study the system of tub3ar reaction chamber with capacitively coupled electrode of alternative current of 60 Hz was employed for the graft polymerization. The graft polymerization of Acylic Acid(AA) onto the poly (ethylene terephthalate) (PET) was carried out by treatment of PET film and fabric by cold plasma (glow discharge of argon gas), followed by the supply of AA vapour. The graft yield was about 1 wt%. The surface property was determined by contact angle, the surface tension was evaluated by zisman’s plot and equation of surface tension mesurement. The results were as follows: 1. In order to obtain lower contact angle, it was effective to avoid the vicinity of electrodes for a setting position of substrate. 2. Contact angle affected on the monomer pressure and its duration of exposure to the acid vapour. 3. Polymer radical formation was influenced by the changes of the value of current density and plasma treatment time. 4. Total surface tension of plasma grafted PET film increased. With an increase in the carboxylic acid content, the dispersion force decreased, while, the polar force and hydrogen bonding force increased. 5. The contact angle decreased from $75^\circ$ to around $30^\circ$ by plasma grafting. There was no ageing effect on the contact angle after 4 months.

  • PDF

Effects of Plasma Treatment on Contact Resistance and Sheet Resistance of Graphene FET

  • Ra, Chang-Ho;Choi, Min Sup;Lee, Daeyeong;Yoo, Won Jong
    • 한국표면공학회지
    • /
    • 제49권2호
    • /
    • pp.152-158
    • /
    • 2016
  • We investigated the effect of capacitively coupled Ar plasma treatment on contact resistance ($R_c$) and channel sheet resistance ($R_{sh}$) of graphene field effect transistors (FETs), by varying their channel length in the wide range from 200 nm to $50{\mu}m$ which formed the transfer length method (TLM) patterns. When the Ar plasma treatment was performed on the long channel ($10{\sim}50{\mu}m$) graphene FETs for 20 s, $R_c$ decreased from 2.4 to $1.15k{\Omega}{\cdot}{\mu}m$. It is understood that this improvement in $R_c$ is attributed to the formation of $sp^3$ bonds and dangling bonds by the plasma. However, when the channel length of the FETs decreased down to 200 nm, the drain current ($I_d$) decreased upon the plasma treatment because of the significant increase of channel $R_{sh}$ which was attributed to the atomic structural disorder induced by the plasma across the transfer length at the edge of the channel region. This study suggests a practical guideline to reduce $R_c$ using various plasma treatments for the $R_c$ sensitive graphene and other 2D material devices, where $R_c$ is traded off with $R_{sh}$.

Development of an Improved Numerical Methodology for Design and Modification of Large Area Plasma Processing Chamber

  • 김호준;이승무;원제형
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.221-221
    • /
    • 2014
  • The present work proposes an improved numerical simulator for design and modification of large area capacitively coupled plasma (CCP) processing chamber. CCP, as notoriously well-known, demands the tremendously huge computational cost for carrying out transient analyses in realistic multi-dimensional models, because electron dissociations take place in a much smaller time scale (${\Delta}t{\approx}10-8{\sim}10-10$) than time scale of those happened between neutrals (${\Delta}t{\approx}10-1{\sim}10-3$), due to the rf drive frequencies of external electric field. And also, for spatial discretization of electron flux (Je), exponential scheme such as Scharfetter-Gummel method needs to be used in order to alleviate the numerical stiffness and resolve exponential change of spatial distribution of electron temperature (Te) and electron number density (Ne) in the vicinity of electrodes. Due to such computational intractability, it is prohibited to simulate CCP deposition in a three-dimension within acceptable calculation runtimes (<24 h). Under the situation where process conditions require thickness non-uniformity below 5%, however, detailed flow features of reactive gases induced from three-dimensional geometric effects such as gas distribution through the perforated plates (showerhead) should be considered. Without considering plasma chemistry, we therefore simulated flow, temperature and species fields in three-dimensional geometry first, and then, based on that data, boundary conditions of two-dimensional plasma discharge model are set. In the particular case of SiH4-NH3-N2-He CCP discharge to produce deposition of SiNxHy thin film, a cylindrical showerhead electrode reactor was studied by numerical modeling of mass, momentum and energy transports for charged particles in an axi-symmetric geometry. By solving transport equations of electron and radicals simultaneously, we observed that the way how source gases are consumed in the non-isothermal flow field and such consequences on active species production were outlined as playing the leading parts in the processes. As an example of application of the model for the prediction of the deposited thickness uniformity in a 300 mm wafer plasma processing chamber, the results were compared with the experimentally measured deposition profiles along the radius of the wafer varying inter-electrode gap. The simulation results were in good agreement with experimental data.

  • PDF

Analysis of a Sphingosine 1-phosphate Receptor $hS1P_3$ in Rat Hepatoma Cells

  • Im, Dong-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권3호
    • /
    • pp.139-142
    • /
    • 2002
  • To examine intracellular signaling of human $S1P_3\;(hS1P_3),$ a sphingosine 1-phosphate (S1P) receptor in plasma membrane, $hS1P_3$ DNA was transfected into RH7777 rat hepatoma cell line, and the inhibition of forskolin-induced cAMP accumulation and activation of MAP kinases by S1P were tested. In $hS1P_3$ transformants, S1P inhibited forskolin-induced activation of adenylyl cyclase activity by about 80% and activated MAP kinases in dose-dependent and pertussis-toxin (PTX) sensitive manners. In oocytes expressing $hS1P_3$ receptor, S1P evoked $Cl^-$ conductance. These data suggested that PTX-sensitive G proteins are involved in $hS1P_3-mediated$ signaling, especially the positive action of S1P in cell proliferation. The potential advantages of rat hepatoma cells for the research of sphingosine 1-phosphate receptor are discussed.

$BCl_3$ 계열 유도결합 플라즈마를 이용한 사파이어 기판의 식각 특성 (Plasma Etching Characteristics of Sapphire Substrate using $BCl_3$-based Inductively Coupled Plasma)

  • 김동표;우종창;엄두승;양설;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.363-363
    • /
    • 2008
  • The development of dry etching process for sapphire wafer with plasma has been key issues for the opto-electric devices. The challenges are increasing control and obtaining low plasma induced-damage because an unwanted scattering of radiation is caused by the spatial disorder of pattern and variation of surface roughness. The plasma-induced damages during plasma etching process can be classified as impurity contamination of residual etch products or bonding disruption in lattice due to charged particle bombardment. Therefor, fine pattern technology with low damaged etching process and high etch rate are urgently needed. Until now, there are a lot of reports on the etching of sapphire wafer with using $Cl_2$/Ar, $BCl_3$/Ar, HBr/Ar and so on [1]. However, the etch behavior of sapphire wafer have investigated with variation of only one parameter while other parameters are fixed. In this study, we investigated the effect of pressure and other parameters on the etch rate and the selectivity. We selected $BCl_3$ as an etch ant because $BCl_3$ plasmas are widely used in etching process of oxide materials. In plasma, the $BCl_3$ molecule can be dissociated into B radical, $B^+$ ion, Cl radical and $Cl^+$ ion. However, the $BCl_3$ molecule can be dissociated into B radical or $B^+$ ion easier than Cl radical or $Cl^+$ ion. First, we evaluated the etch behaviors of sapphire wafer in $BCl_3$/additive gases (Ar, $N_2,Cl_2$) gases. The behavior of etch rate of sapphire substrate was monitored as a function of additive gas ratio to $BCl_3$ based plasma, total flow rate, r.f. power, d.c. bias under different pressures of 5 mTorr, 10 mTorr, 20 mTorr and 30 mTorr. The etch rates of sapphire wafer, $SiO_2$ and PR were measured with using alpha step surface profiler. In order to understand the changes of radicals, volume density of Cl, B radical and BCl molecule were investigated with optical emission spectroscopy (OES). The chemical states of $Al_2O_3$ thin films were studied with energy dispersive X-ray (EDX) and depth profile anlysis of auger electron spectroscopy (AES). The enhancement of sapphire substrate can be explained by the reactive ion etching mechanism with the competition of the formation of volatile $AlCl_3$, $Al_2Cl_6$ or $BOCl_3$ and the sputter effect by energetic ions.

  • PDF

Corn Gluten Hydrolysate Affects the Time-Course of Metabolic Changes Through Appetite Control in High-Fat Diet-Induced Obese Rats

  • Lee, Hyojung;Lee, Hyo Jin;Kim, Ji Yeon;Kwon, Oran
    • Molecules and Cells
    • /
    • 제38권12호
    • /
    • pp.1044-1053
    • /
    • 2015
  • This study first investigated the effects of corn gluten hydrolysate (CGH) (1.5 g/day) administration for 7 days on appetite-responsive genes in lean Sprague-Dawley (SD) rats. In a second set of experiments, the metabolic changes occurring at multiple time points over 8 weeks in response to CGH (35.33% wt/wt) were observed in high-fat (HF, 60% of energy as fat) diet-fed SD rats. In lean rats, the hypothalamus neuropeptide-Y and proopiomelanocortin mRNA levels of the CGH group were significantly changed in response to CGH administration. In the second part of the study, CGH treatment was found to reduce body weight and perirenal and epididymal fat weight. CGH also prevented an increase in food intake at 2 weeks and lowered plasma leptin and insulin levels in comparison with the HF group. This reduction in the plasma and hepatic lipid levels was followed by improved insulin resistance, and the beneficial metabolic effects of CGH were also partly related to increases in plasma adiponectin levels. The Homeostasis Model of Assessment - Insulin Resistance (HOMA-IR), an index of insulin resistance, was markedly improved in the HF-CGH group compared with the HF group at 6 weeks. According to the microarray results, adipose tissue mRNA expression related to G-protein coupled receptor protein signaling pathway and sensory perception was significantly improved after 8 weeks of CGH administration. In conclusion, the present findings suggest that dietary CGH may be effective for improving hyperglycemia, dyslipidemia and insulin resistance in diet-induced obese rats as well as appetite control in lean rats.

구기자(枸杞子) 추출물이 납 투여(投與)에 의한 흰쥐의 신장(腎臟) 손상(損傷)에 미치는 영향(影響) (Effects of Lycii Fructus Water Extracts on the Lead-Induced Nephrotoxicity in Rats)

  • 이호섭;한성희;한상환
    • 대한한방내과학회지
    • /
    • 제22권2호
    • /
    • pp.193-198
    • /
    • 2001
  • This study was designed to investigate the effects of Korean Lycii Fructus water extract in Pb-administered rats. The Pb exposed rats were given 100 ppm and 200 ppm in the distilled water. Sixty male Sprague-Dawley rats weighing between 90 and 110g were blocked into 6 groups according to body weight. The control group was fed a normal diet, without lead. The experimental groups, which was fed a normal diet plus 100 ppm and 200 ppm lead, and one group received a normal diet plus Lycii Fructus water extracts. The results: the Food intake, the weight gain, and the kidney weight content in the cadmium added groups were lower than those in the Lycii Fructus water extracts group. The contents of Pb in the kidneys of the rats were determined by using ICP(lnductively Coupled Plasma Spectrophotometer). The accumulation of lead in the kidney was lower in the Lycii Fructus water extracts group. The Plasma levels of renin activity was higher in the lead administration groups, as compared with the Lycii Fructus water extracts. Plasma levels of aldosterone activity was higher in the lead administration group, as compared with Lycii Fructus water extracts. These results suggest that Lycii Fructus water extracts has a lowering effects on the accumulation of pb on kidney and it is believed that the Lycii Fructus water extracts have some protective effects on lead-induced nephrotoxicity in rats, but the mechanism of these effects was obscure.

  • PDF

고 에너지 레이저를 통한 알루미늄-산소 연소현상에 대한 분광분석 (The spectroscopic study of chemical reaction of laser-ablated aluminum-oxygen by high power laser)

  • 김창환;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.608-611
    • /
    • 2011
  • 이차 추진제로 많이 쓰이는 알루미늄을 고출력 레이저를 이용하여 공기 중의 산소와 반응시켜 발생되는 rich 및 stoichiometric 상태의 알루미늄-산소 연소 현상에 대해 레이저 분광분석법을 이용하여 연구하였다. 7ns의 펄스 주기와 1064nm의 주파수를 가진 Q-switched Nd:YAG 레이저로 40 - 2500mJ의 에너지가 공급되었으며, 플라즈마 빛은 echelle 회절 분광기와 ICCD 카메라로 감지하였다. 레이저 분광분석을 통하여 연료인 알루미늄과 산화제인 산소의 원자 신호를 얻었을 뿐만 아니라, 현상이 일어나는 환경인 플라즈마 온도와 전자밀도가 계산되었다. 특정 전자 밀도비 비교를 통하여, 고출력 레이저를 통해 일어나는 알루미늄과 산소의 연소 및 폭발 현상 변화에 대한 분석이 가능하다는 것에 본 논문의 중요성이 있다.

  • PDF

분광분석을 활용한 고에너지 레이저 환경에서의 알루미늄-산소 화학반응 연구 (The spectroscopic study of chemical reaction of laser-ablated aluminum-oxygen by high power laser)

  • 김창환
    • 한국항공우주학회지
    • /
    • 제44권9호
    • /
    • pp.789-795
    • /
    • 2016
  • 이차 추진제로 많이 쓰이는 알루미늄을 고출력 레이저를 조사하여 공기 중의 산소와 반응시켜 발생되는 알루미늄과 산소의 화학 반응을 레이저 분광분석법을 이용하여 연구를 수행 하였다. 7ns의 펄스 주기와 1064nm의 주파수를 가진 Q-switched Nd:YAG 레이저로 40 - 2500mJ($6.88{\times}10^{10}-6.53{\times}10^{11}W/cm^2$)의 에너지가 공급되었으며, 플라즈마 빛은 echelle 회절 분광기와 ICCD 카메라로 감지하였다. 분광분석을 통하여 알루미늄과 산소의 원자/분자 신호 분석과 현상이 일어나는 플라즈마 환경의 특성 연구를 위해 들뜸 온도(2200K~6600K) 및 전자밀도($3.15{\times}10^{15}{\sim}2.38{\times}10^{16}cm^{-3}$) 계산, 그리고 알루미늄 표면의 크레이터(Crater) 분석을 수행하였다. 본 연구는 고 레이저 복사 조도 환경하에서 발생되는 화학 반응과 플라즈마의 특성을 파악하는 방법을 제시하고 있다.

$Hg^{2+}$에 의한 토마토 뿌리조직 마이크로솜 $H^+-ATPase$의 가역적 저해 ([$Hg^{2+} $-induced Reversible Inhibitions of Microsomal $H^+-ATPase$ Prepared from Tomato Roots)

  • 신대섭;조광현;김영기
    • Applied Biological Chemistry
    • /
    • 제42권4호
    • /
    • pp.298-303
    • /
    • 1999
  • 토마토 뿌리조직의 마이크로솜 ATPpase활성에 대한 중금속의 효과를 조사하기 위하여 뿌리조직으로부터 마이크로솜을 분리하였고, enzyme-coupled assay를 이용하여 마이크로솜 이온펌프(ATPase)의 활성을 측정하였다. 여러 가지 중금속 이온들 중 $Hg^{2+}$은 마이크로솜 ATPpase 활성을 농도 의존적으로 저해하였으며, $Gd^{3+}$$Fe^{3+}$, $La^{3+}$, $Zn^{2+}$, $Pb^{2+}$ 등은 마이크로솜 ATPpase의 활성을 저해하면서 동시에 assay에 사용된 효소를 저해하였다. 그러나, $Cs^+$$Ba^{2+}$은 마이크로솜 ATPpase 활성에 영향을 미치지 않았다. $Hg^{2+}$은 원형질막과 액포막에 위치하는 $H^+-ATPase$들의 활성을 $10\;{\mu}M$ 이상의 농도에서 현저히 저해하였고, 1 mM 이상의 농도에서 완전히 저해하였으며, 두 효소들에 대한 활성저해의 Ki 값은 각각 $80\;{\mu}M$, $58\;{\mu}M$로 나타났다. $Hg^{2+}$에 의해 저해된 ATPpase의 활성은 DTT의 농도를 증가시킴에 따라 회복되어, $Hg^{2+}$에 의한 ATPpase 활성저해는 가역적임을 확인하였다. 이러한 결과들은 $Hg^{2+}$이 원형질막과 액포막에 위치한 $H^+-ATPase$들을 비선택적이고 가역적으로 저해함을 보여준다.

  • PDF