• Title/Summary/Keyword: Induced Voltage

Search Result 1,158, Processing Time 0.036 seconds

An Analysis of the Induced Voltage characteristic on 22.9kV-Y Distribution Lines (가공배전선에 의한 유도전압 특성 분석)

  • Lim, Yong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.500-502
    • /
    • 2003
  • This paper reviews calculating of induced voltage onto a communication line from 22.9kV-Y Distribution Lines. The coexistence of both power line and communication line in parallel generates the induction of significant longitudinal voltage in the weak current line. In order to evaluate a precise induced voltage, this paper indicated some problems about coefficient and numerical formula. It also presents some induced voltage production technology standard application.

  • PDF

Effect of Induced Voltage on Spray Characteristics of Piezo Actuated Diesel Injector (인가전압이 디젤 피에조 인젝터의 분무 특성에 미치는 영향)

  • Lee, Jin-Woo;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.99-106
    • /
    • 2010
  • A piezo-driven injector was applied with a purpose to evaluate the effect of induced voltage on spray characteristics. For this, injection rate, macroscopic imaging, ambient gas entrainment and particle sizing were carried out. It was shown that initial slope of injection rate was steeper as induced voltage increased, while slope of injection rate became mostly constant with fully opened needle. From macroscopoic imaging, longer spray tip penetration was produced with higher induced voltage. Moreover, wider spray angle was detected in the early stage of spray development, when higher induced voltage was applied. Ambient air entrainment rate was increased and particle size was reduced with higher induced voltage.

Analysis of Induced Voltage on Telecommunication Line in Parallel Distribution System

  • Kim, Hyun-Soo;Rhee, Sang-Bong;Lee, Soon-Jeong;Kim, Chul-Hwan;Kim, Yoon Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.726-732
    • /
    • 2014
  • A current flowing through a distribution conductor produces induced voltage, which is harmful to a telecommunication line. Previous research on induced voltage has been focused on single-circuit lines in the distribution system. However, the double-circuit lines, referred to as parallel distribution lines, are widely used in distribution systems because they have significant economic and environmental advantages over single-circuit lines. Therefore, a study on the induced voltage in double-circuit lines is needed. This paper presents a method of calculating the induced voltage in a parallel distribution system using four-terminal parameters and vector analysis. The calculation method is verified by the Electromagnetic Transient Program (EMTP) simulation.

Statistical Analysis of Lightning-Induced Voltages on Subscriber Telecommunication Lines in Korea

  • Oh, Ho-Seok;Park, Dong-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.4
    • /
    • pp.148-152
    • /
    • 2008
  • This paper describes the characteristics of lightning-induced voltages on subscriber telecommunication lines in Korea. Lightning parameters such as peak voltage, rise time, decay time, and steepness of the wave front were statistically analyzed from the measured results obtained using a waveform memory system. An induced voltage measurement system was also developed and installed at 286 sites in Korea to collect the induced voltage data. The distributions of lightning-induced voltages were also analyzed using these data.

Research on the Correlation of Control Malfunction with Induced Voltage of Control Signal Line According to Voltage Change of a Power Line

  • Kang, Dong-Woo;Kim, In-Gun;Ham, Sang-Hwan;Kim, Sung-Yul;Bae, Sungwoo;Kim, Dae-Nyeon;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.775-780
    • /
    • 2016
  • This induced voltage measurement test and electromagnetic field simulation are related to the possibility of control signal malfunction by power line. Through an experiment, this research analyzed whether the voltage causing control malfunction according to the on/off status of power permitted to power line was induced to control signal line. Also, the research calculated the voltage induced to control signal line and examined the phenomenon by conducting an electro-magnetic field-specific simulation through the finite element method for the cable model used in the experiment.

Statistical Analysis of Lightning-Induced Voltage on Subscriber Telecommunication Lines (가입자 통신선로 유도뢰 전압의 통계적 분석)

  • Oh, Ho-Seok;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.71-78
    • /
    • 2008
  • In this paper, The voltage waveshapes and the lightning parameters such as peak voltage, rise time, decay time and steepness of the front wave were statistically anal zed from the lightning-induced voltages measured on subscriber telecommunication line by lightning. Induced voltage measurement system to measure and collect the lightning-induced voltages in several regions of Korea was developed and installed in several sites. The distributions of lightning-induced voltages for Tears, regions and seasons were analyzed.

A Simulator for Calculating Normal Induced Voltage on Communication Line

  • Heo, Jeong-Yong;Seo, Hun-Chul;Lee, Soon-Jeong;Kim, Yoon Sang;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1394-1400
    • /
    • 2014
  • The current flowing through the overhead transmission lines causes induced voltage on the communication lines, which can be prevented by calculating the induced voltage at the planning stage for overhead transmission line installment through an agreement between the communication and electric power companies. The procedures to calculate the induced voltages, however, are complicated due to the variety of parameters and tower types of the overhead transmission lines. The difficulty necessitates the development of a simulator to measure the induced voltage on the communication lines. This paper presents two simulators developed for this purpose; one using the Data Base (DB) index method and the other using the Graphic User Interface (GUI) method. The simulators described in this paper have been implemented by the EMTP (Electromagnetic Transient Program).

Analysis of Normal Induced Voltage on Telecommunication Line according to Earth Resistivity in Distrbution Lines (배전선로에서의 대지 저항율에 따른 통신선 상시 유도전압 분석)

  • Kim, Hyoun-Su;Yeo, Sang-Min;Kim, Chul-Hwan;Lyu, Seung-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.223_224
    • /
    • 2009
  • This paper investigates a normal induced voltage according to earth resistivity from distribution lines using calculation method of the normal induced voltage on telecommunication line. The induced voltage according to earth resistivity from distribution lines is verified by vector analysis and EMTP(Electro-Magnetic Transients Program).

  • PDF

The Analysis of Drop-On-Demand Characteristic of Electrostatic Field Induced Inkjet Head System with Carbon Nano Tube (CNT) Ink (정전기장 유도된 잉크젯 프린터 헤드를 이용한 탄소나노튜브 잉크의 Drop-On-Demand 특성 연구)

  • Choi, J.Y.;Kim, Y.J.;Son, S.U.;Kim, Y.M.;Byun, D.Y.;Ko, H.S.;Lee, S.H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1445-1449
    • /
    • 2007
  • This paper presents the DOD (Drop-On-Demand) characteristic using the electrostatic field induced inkjet printing system. In order to achieve the DOD characteristic of electrostatic field induced inkjet printing, applied the bias voltage of 1.4 kV and the pulse voltage of $2.0\;kV\;{\sim}\;2.7\;kV$ using high voltage pulse generator. Electrostatic field induced droplet ejection is directly observed using a high-speed camera and for investigated DOD characteristic, CNT ink used. The electrostatic field induced inkjet head system has DOD characteristic using pulse generator which can be applied pulse voltage. The bias voltage has a good condition which form meniscus and has micro dripping mode for small size micro droplet. Also, the droplet size decreases with increasing the applied pulse voltage. This paper shows DOD characteristic at electrostatic field induced inkjet head system, Therefore. electrostatic DOD inkjet head system will be applied industrial area comparing conventional electrostatic inkjet head system.

Calculation of an Induced Voltage on Telecommunication Lines in Parallel Distribution Lines (병행 배전선로에서의 통신선 유도전압 계산)

  • Kim, Hyun-Soo;Rhee, Sang-Bong;Yeo, Sang-Min;Kim, Chul-Hwan;Lyu, Seong-Heon;Kim, Seong-Arm;Weon, Bong-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1688-1695
    • /
    • 2008
  • Recently, it is common in a distribution system of Korea Electric Power Corporation (KEPCO) to find instances where distribution lines are parallel. A traditional method of an induced voltage calculation is not suitable for parallel distribution lines. For more actual analysis of induced voltage on telecommunication lines in parallel distribution lines, a new calculation method is needed. This paper presents a new calculation method of an induced voltage on telecommunication line using equivalent ${\pi}$ circuits matrix in parallel distribution lines. The advantages of the calculation method are using actual neutral current value and not using screening factor for considering the overhead ground wire and the neutral wire. To verify the effectiveness and the accuracy of the method, various case studies are performed with EMTP(Electro-Magnetic Transients Program).