• Title/Summary/Keyword: Induced Velocity

Search Result 1,120, Processing Time 0.034 seconds

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (아음속 수직분사제트에서 액적크기 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Hwang, Yong-Seok;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2007
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomize. internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD (Sauter Mean Diameters) distribution by using Planar Liquid Laser Induced Fluorescence technique. The objectives of this research are get a droplet distributions and drop size measurements of each condition and compare with the other flow effects. As the result, This research has been showned that droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects, and normalized distance from the injector exit length(x/d, y/d). There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

OCR evaluation of cohesionless soil in centrifuge model using shear wave velocity

  • Cho, Hyung Ik;Sun, Chang Guk;Kim, Jae Hyun;Kim, Dong Soo
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.987-995
    • /
    • 2018
  • In this study, a relationship between small-strain shear modulus ($G_{max}$) and overconsolidation ratio (OCR) based on shear wave velocity ($V_S$) measurement was established to identify the stress history of centrifuge model ground. A centrifuge test was conducted in various centrifugal acceleration levels including loading and unloading sequences to cause various stress histories on centrifuge model ground. The $V_S$ and vertical effective stress were measured at each level of acceleration. Then, a sensitivity analysis was conducted using testing data to ensure the suitability of OCR function for the tested cohesionless soils and found that OCR can be estimated based on $V_S$ measurements irrespective of normally-consolidated or overconsolidated loading conditions. Finally, the developed $G_{max}$-OCR relationship was applied to centrifuge models constructed and tested under various induced stress-history conditions. Through a series of tests, it was concluded that the induced stress history on centrifuge model by compaction, g-level variation, and past overburden load can be analysed quantitatively, and it is convinced that the OCR evaluation technique will contribute to better interpret the centrifuge test results.

Thrust Characteristics Analysis considering the effect of the loops of flux in a LIM for Railway Transit (맴돌이 자속의 영향을 고려한 철도차량용 선형유도전동기의 추력 특성 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Han, Kyung-Hee;Lee, Byung-Song;Kwon, Sam-Young;Park, Hyun-June
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1605-1609
    • /
    • 2007
  • In the case of Linear induction motor(LIM), numerical analysis method like Finite Element Method(FEM) has been mainly used to analyze the travelling magnetic field problem which includes the velocity-induced electromotive force. If the problem including the velocity-induced electromotive force is analyzed by FEM using Galerkin method, the solution can be oscillated according to Peclet Number, which is determined by conductivity, permeability, moving velocity and size of mesh. Consequently, the accuracy of the solution can be low and the Loops of flux can be occurred at the secondary back-iron. These loops of flux occurred at the secondary back-iron does not exist physically, but it can be occurred in the analysis. In this case, the loops of flux can be generally removed by using Up-Wind method which is impossible to apply a conventional S/W tool(Maxwell 2D). Therefore, in this paper, authors examined the Loops of flux occurred at the secondary back-iron of LIM according to variations of Peclet Number, and analyzed whether these loops of flux affect on the thrust force characteristics of LIM or not.

  • PDF

An Experimental Study on Angled Injection and Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.486-491
    • /
    • 2008
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomizer internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD(Sauter Mean Diameters) distribution by using PLLIF(Planar Liquid Laser Induced Fluorescence) technique. The objectives of this research are getting a droplet distribution and drop size measurement of each condition and compare with the other flows effect. As the result, This research have been showed the droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects and normalized distance from the injector exit length.(x/d, y/d)There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

Influence of turbulence modeling on CFD simulation results of tornado-structure interaction

  • Honerkamp, Ryan;Li, Zhi;Isaac, Kakkattukuzhy M.;Yan, Guirong
    • Wind and Structures
    • /
    • v.35 no.2
    • /
    • pp.131-146
    • /
    • 2022
  • Tornadic wind flow is inherently turbulent. A turbulent wind flow is characterized by fluctuation of the velocity in the flow field with time, and it is a dynamic process that consists of eddy formation, eddy transportation, and eddy dissipation due to viscosity. Properly modeling turbulence significantly increases the accuracy of numerical simulations. The lack of a clear and detailed comparison between turbulence models used in tornadic wind flows and their effects on tornado induced pressure demonstrates a significant research gap. To bridge this research gap, in this study, two representative turbulence modeling approaches are applied in simulating real-world tornadoes to investigate how the selection of turbulence models affects the simulated tornadic wind flow and the induced pressure on structural surface. To be specific, LES with Smagorinsky-Lilly Subgrid and k-ω are chosen to simulate the 3D full-scale tornado and the tornado-structure interaction with a building present in the computational domain. To investigate the influence of turbulence modeling, comparisons are made of velocity field and pressure field of the simulated wind field and of the pressure distribution on building surface between the cases with different turbulence modeling.

Degradation analysis of horizontal steam generator tube bundles through crack growth due to two-phase flow induced vibration

  • Amir Hossein Kamalinia;Ataollah Rabiee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4561-4569
    • /
    • 2023
  • A correct understanding of vibration-based degradation is crucial from the standpoint of maintenance for Steam Generators (SG) as crucial mechanical equipment in nuclear power plants. This study has established a novel approach to developing a model for investigating tube bundle degradation according to crack growth caused by two-phase Flow-Induced Vibration (FIV). An important step in the approach is to calculate the two-phase flow field parameters between the SG tube bundles in various zones using the porous media model to determine the velocity and vapor volume fraction. Afterward, to determine the vibration properties of the tube bundles, the Fluid-Solid Interaction (FSI) analysis is performed in eighteen thermal-hydraulic zones. Tube bundle degradation based on crack growth using the sixteen most probable initial cracks and within each SG thermal-hydraulic zone is performed to calculate useful lifetime. Large Eddy Simulation (LES) model, Paris law, and Wiener process model are considered to model the turbulent crossflow around the tube bundles, simulation of elliptical crack growth due to the vibration characteristics, and estimation of SG tube bundles degradation, respectively. The analysis shows that the tube deforms most noticeably in the zone with the highest velocity. As a result, cracks propagate more quickly in the tube with a higher height. In all simulations based on different initial crack sizes, it was observed that zone 16 experiences the greatest deformation and, subsequently, the fastest degradation, with a velocity and vapor volume fraction of 0.5 m/s and 0.4, respectively.

Dynamic Characteristics of Buried Pipeline under Vibration Velocity of Vehicle Loads (도로 하부 통과 배관의 주행 하중 속도에 따른 진동 특성)

  • Won, Jong-Hwa;Sun, Jin-Sun;Yoo, Han-Kyu;Kim, Moon-Kyum
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Vibration velocity induced by earthquakes or external vibration sources is one of the integrity assessment indexes, and is also a representative value used to describe the amount of vibration because it is based on a proportional relationship with the damage scale. In this study, the vibration velocity criterion for structures is first examined. Then, based on the velocity criterion, an integrity assessment is performed. Burial condition is set up based on the "Highway and Local Road Design Criteria" with API 5L Gr. X65 pipeline(D=762 mm). The FE model considers DB-24 vehicle load as a time function with a varying velocity in the range of $20{\sim}160\;km/h$. Maximum vibration velocity occurs at v=80 km/h and decreases after v=80 km/h. The maximum vibration velocity of buried pipeline by DB-24 loads is about 0.034 cm/s. The velocity that occurs is in the range of allowable values for each vibration velocity criterion. The wave propagation velocity was identified based on attenuation law and the minimum value appears at vehicle velocity 80 km/h that has maximum vibration velocity.

  • PDF

Comparison of Peripheral Blood Flow in Post-Stroke Hemiparetic Patients and Normal Person with Doppler Ultrasonography (도플러 초음파 기기를 이용한 편측 부전마비성 뇌졸중 환자와 정상인의 말초 혈류 비교 연구)

  • Han, Deok-Jin;Bang, Chang-Ho;Kim, Sergey;Bae, Young-Min;Shin, Sae-Ron;Yang, Chung-Yong;Lee, In
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.6
    • /
    • pp.1491-1496
    • /
    • 2009
  • Stroke is usually associated with the cerebral blood flow of the central nervous system. However, studies concerning the effects of neurologic sysmptoms induced from stroke on the peripheral blood flow has not taken place sufficiently. To ascertain the feasibility of a blood flow meter adopting to use doppler ultrasonogrphy, under the prospect that hemiparesis induced from stroke may have effect on the peripheral blood flow, the peripheral blood flow velocity was observed. The control group made up of healthy people without any factors capable of effecting the peripheral blood flow velocity, and patient group which consist of hemiparetic people induced from stroke, were recruited. Volumes of recruitment are 21 persons in the patient group, and 29 persons in the control group, but the final numbers of people are 17 and 21 respectively because of the inconsistancy in the method of the test. The non-invasive method of Doppler effect of Ultrasound was used to measure the blood flow velocity. The blood flow velocity in the peripheral part of left and right fourth fingers:dorsal branches of proper palmar digital artery to dorsum of distal phalanges, was measured in the control group and patient group through Doppler Ultrasound. In comparison of the control group and the patient group, the systolic blood flow velocity from the peripheral part of the upper extremity was lower in the patient group than that of the control group. According to such results, it is concluded that hemiparesis induces the reduction of the peripheral blood flow velocity in the systolic phase.

Differential Effects of Nitric Oxide Synthase Inhibitors in Rats

  • Lee, Jun-Hee;Shin, Chang-Yell;Kang, Bong-Su;Jeong, Ji-Hoon;Choi, Kyeong-Bum;Min, Young-Sil;Kim, Jin-Hak;Huh, In-Hoi;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.2
    • /
    • pp.99-104
    • /
    • 2000
  • We investigated the action of NOS inhibitors on NOS in rats. Both of nitric oxide synthase inhibitors, $N^G$-monomethyl-L-arginine $(L-NMMA,\;3\;{\mu}M)$ or $N^G$-nitro-L-arginine methylester $(L-NAME,\;30\;{\mu}M),$ augmented phenylephrine $(PE,\;10^{-7}\;M)-induced$ contraction which was inhibited by acetylcholine (ACh) in rat thoracic aorta. This augmentation by L-NAME or L-NMMA was attenuated with the treatment of NO precursor, arginine. ACh, however, decreased the augmentation induced by L-NMMA, but not by L-NAME. Superoxide dismutase (SOD, 50 u/ml) potentiated an inhibitory effect of ACh on the PE $(10^{-7}\;M)-induced$ contraction. It has been known that platelet activating factor itself induces iNOS. Platelet activating factor $(PAF,\;10^{-7}\;M)$ inhibited PE $(10^{-7}\;M)-induced$ contraction. Pretreatment with L-NMMA (30 mM) or L-NAME (30 mM) significantly blocked the inhibitory action of PAF on PE-induced contraction. L-NMMA (100 mM) or L-NAME (100 mM) reduced nerve conduction velocity (NCV) relevant to nNOS in rat sciatic nerve. ACh attenuated the reduction of NCV by L-NMMA-, but not by L-NAME-induced reduction of NCV. These results suggest that L-NMMA and/or L-NAME have different action on three types of NOS in rats.

  • PDF

Particle Impact Damage behaviors in silicon Carbide Under Gas Turbine Environments-Effect of Oxide Layer Due to Long-Term Oxidation- (세라믹 가스터빈 환경을 고려한 탄화규소의 입자충격 손상거동-장기간 산화에 따른 산화물층의 영향-)

  • 신형섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1033-1040
    • /
    • 1995
  • To simulate strength reliability and durability of ceramic parts under gas turbine application environments, particle impact damage behaviors in silicon carbide oxidized at 1673 K and 1523 K for 200 hours in atmosphere were investigated. The long-term oxidation produced a slight increase in the static fracture strength. Particle impact caused a spalling of oxide layer. The patterns of spalling and damage induced were dependent upon the property and impact velocity of the particle. Especially, the difference in spalling behaviors induced could be explained by introducing the formation mechanism of lateral crack and elastic-plastic deformation behavior at impact sit. At the low impact velocity regions, the oxidized SiC showed a little increase in the residual strength due to the cushion effect of oxide layer, as compared with the as-received SiC without oxide layer.