• Title/Summary/Keyword: Indophenol

Search Result 27, Processing Time 0.023 seconds

The Change of Vitamin C Content and Effect of Galacturonic Acid Addition during Kimchi Fermentation (김치 숙성중(熟咸中)의 비타민 C 함량(含量)의 소장(消長) 및 Galacturonic Acid의 첨가(添加) 효과(效果))

  • Lee, Tae-Young;Lee, Joung-Won
    • Applied Biological Chemistry
    • /
    • v.24 no.2
    • /
    • pp.139-144
    • /
    • 1981
  • Modified radish Kimchi and radish-root juice were fermented under $N_2$ atmosphere at $22{\sim}23^{\circ}C$ and $37^{\circ}C$, respectively and their changes of vitamin C content. were determined by dinitrophenylhydrazine and indophenol methods. In the earlier period of the fermentation, vitamin C content decreased temperarily and then began to increase. When the flavor of Kimchi was most acceptable, vitamin C showed the maximum value which eras equivalent to or more than the initial, after which vitamin C content decreased gradually. The increase of vitamin C content seemed to come from the biosynthesis of the vitamin owing to the enzymatic action occurred in radish-root. The addition of galacturonic acid to Kimchi and to radish-root juice elevated the vitamin C content, which suggested galacturonic acid was a good substrate for the synthesis of vitamin C. The optimum pH of the Kimchi fermentation for the better vitamin C content ranged 4.0 to 4.5.

  • PDF

Analysis Methods for Measurement of Ammonia Concentration (가스상 암모니아 측정을 위한 분석방법별 특성 연구)

  • Sa, Jae-Hwan;Yoon, Seok-Kyung;Roh, Gi-Hwan;Jeon, Eui-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.1
    • /
    • pp.43-54
    • /
    • 2008
  • Management and control of ammonia at the sources and ambient largely depend on sampling and measurement techniques. Good sampling and measurement techniques provide high quality data. The main purpose of the study is compare the analytical characteristics of the Indolphenol method which is one of the standard method in Korea with automatic analyzers for continued measuring gaseous ammonia. For comparison with other analytical methods, the verification test was designed to evaluate performance parameters; linearity, absorption efficiency, reproducibility and repeatability test, accuracy, and response time test. $R^2$ of calibration curve using IPM and CLM was very high (value is 1.000), but for EcSM $R^2$ value was estimated to be lower than IPM and CLM (as 0.991). The RSD of the CLM ranged from 0.1 to 2.3% over the nine concentration levels measured, %Ds was 0.1 to 10.7%, and average RA over all the measurements was 3.3%. The RSD of IPM and EcSM was ranged from 1.0 to 8.1, 3.9 to 14.0 respectively, and average RA were 8.71, 4.9% respectively. Rise in response times of EcSM was estimated to be 1 minute. It is found to be more sensitive than response time (which ranged from 2 to 9 minute) of CLM. For ammonia concentration measured using the IPM and the CLM from the same ammonia source, linear regression of IPM versus CLM show a slope of 0.805, an intercept of 637 ppb, and $R^2$ of 0.868.

Evaluation of NH3 emissions in accordance with the pH of biochar

  • Yun-Gu, Kang;Jae-Han, Lee;Jin-Hyuk, Chun;Yeo-Uk, Yun;Taek-Keun, Oh;Jwa-Kyung, Sung
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.787-796
    • /
    • 2021
  • Nitrogen (N) is the most important element during the process of plant growth, and the quality of crops varies depending on the amount of nitrogen present. Most of the nitrogen is used for plant growth, but approximately 10 - 20% of Nitrogen is carried away by the wind in the form of NH3. This volatilized NH3 reacts with various oxides in the atmosphere to generate secondary particulate matter. To address this, the present study attempts to reduce NH3 occurring in the soil using biochar at a specific pH. Biochar was used as a treatment with 1% (w·w-1) of the soil, and urea was applied at different levels of 160, 320, and 640 kg·N·ha-1. NH3 generated in the soil was collected using a dynamic column and analyzed using the indophenol blue method. NH3 showed the maximum emission within 4 - 7 days after the fertilizer treatment, decreasing sharply afterward. NH3 emission levels were reduced with the biochar treatment in all cases. Among them, the best reduction efficiency was found to be approximately 25% for the 320 kg·ha-1 + pH 6.7 biochar treatment. Consequently, in order to reduce the amount of NH3 generated in the soil, it is most effective to use pH 6.7 biochar and a standard amount (320 kg·N·ha-1) of urea.

The Effects of diethyl maleate on the N-methyl-N'-nitro-N-nitrosoguanidine induced gastric carcinogenesis in rats (Diethyl maleate가 N-methyl-N'-nitro-N-nitrosoguanidine에 의해서 유발되는 랫드 위암 발생에 미치는 영향에 관한 병리학적 연구)

  • Park, Cheol-bom;Lee, Joon-sup
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.4
    • /
    • pp.793-807
    • /
    • 1995
  • This study was carried out to investigate the effects of diethyl maleate(DEM) on the carcinogenesis of forestomach and pyloric glandular stomach in rats caused by N-methyl-N'-nitro-N-nitrosoguanidine(MNNG). A total of 60 male 6-week-old Wistar rats were given twice intragastric injection of MMNG(200mg/kg BW), then were given diets containing 5% NaCl for 3 weeks until 4th week of the experiment. And then the animals of groups of 1 and 2 were placed on diets containing 0.2% DEM for 16 weeks until the end of 20 weeks of the experiment. On the other hand, the animals of groups of 3 and 4 were placed on basal diets for the same periods. The tissues of forestomach and liver of each group were frozen in liquid nitrogen and the activities of quinone reductase(QR) were determined by measurement of the dicoumarol-sensitive reduction of dichloro-indophenol by NADPH at 600nm. All rats were sacrificed at the end of 20 weeks of the experiment. Every animal was fasted for 24 hrs prior to sacrifice. The forestomach was fixed in 10% neutral phosphate buffered formalin for histology and the pyloric gland was fixed in sublimated formalin for immunohistochemistry of pepsinogen 1 altered pyloric gland(PAPG). The final body weight of the group given MNNG and treated with 5% NaCI and DEM was significantly decreased compared with that of the group 4(p<0.05). Food and water consumption rates were not significantly changed. The preneoplastic and neoplastic lesions of the forestomach given MNNG and treated with 5% NaCI and DEM were significantly increased compared to those of the group 4(p<0.0l). The incidence of PAPG in the groups treated with 0.2% DEM was significantly increased compared with that of the group 4(group 1:p<0.01, group 2:p<0.05). The activities of QR of forestomach in the groups treated with 0.2% DEM were significanitly increased compared with those of the group 4(p<0.001), but those of liver were not significant. These results indicate that DEM exert the enhancing effect of forestomach and glandular stomach carcinogenesis in rats pretreated with MNNG and NaCl.

  • PDF

Study on the Filter Collection Methods of Ammonia and Ammonium Salts in the Atomosphere (대기중의 암모니아 및 암모늄염의 필터포집법에 관한 연구)

  • Hui Kang Kim;橋本芳一;Yong Keun Lee
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.36-42
    • /
    • 1982
  • Filters were evaluated to use in the collection of ammonia and ammonium salts in the atmosphere. Ammonia from standard gas generator was collected on a glass fiber filter impregnated with a mixture of 3% boric acid and 25% glycerin. The collection efficiency by the impregnated filter was 96.4${\pm}$2.15% in pH control method and 97.4${\pm}$1.06% in the atmosphere for five measurements, respectively. Adsorption and desorption of gaseous ammonia were compared using three commercially available filters; glass fiber, quartz fiber and polycarbonate filters. Both glass and quartz fiber filters indicated some loss of ammonium salts and adsorption of ammonia, respectively. However, polycarbonate filter was found to be satisfactory for the collection of ammonium salts in the atmosphere. The minimum measurable concentration of ammonia was 0.83ppb (ca. 0.63${\mu}g$/$m^3$) by spectrophotometry of the indophenol method for the sample collected by 47mm${\phi}$ filter(20l/min, 60min). The sensitivity of the present method is about 20 folds higher than that of conventional method of bubbler collection followed by spectrophotometry, so that this method makes it possible to measure thevariation of ammoniacal concentrations in the atmosphere for a short time period of about 60 min.

  • PDF

Effects of Sulfur Dioxide on Pigments, Frotein Content and Photosystem II Activity of Barley and Corn Leaves (보리와 옥수수 잎의 색소, 단백질 함량 및 관계II 활성에 미치는 ${SO}^2$의 영향)

  • 정화숙
    • Journal of Plant Biology
    • /
    • v.25 no.3
    • /
    • pp.135-151
    • /
    • 1982
  • This investigation was carried out to clarify the changes of pigments and soluble protein, and photosystem II activity in the leaves of barley (${SO}_2$-sensitive) and corn (${SO}_2$-resistant) seedlings induced by the ${SO}_2$ fumigation (10, 50ppm). The pH changes of the leaf extract, the content of sulfite and sulfate, the activities of catalase, peroxidase, and polyphenoloxidase were compared in the leaves of barley and corn seedlings induced by ${SO}_2$ fumigation. The results are summarized as follows: An appreciable effect of pH change of leaf extract by ${SO}_2$ fumigation was observed in barley leaves (pH 6.10 to 5.18), but only a small change occurred in corn leaves (pH 5.66 to 5.50). The same pattern of pH changes was recorded when the solution of 0.2N HCl was added to leaf extract, providing lower buffering capacity of the barley leaves than corn leaves. After 2 hours of exposure to 10 ppm ${SO}_2$, the contents of ${SO}^{2-}_3$ and ${SO}^{2-}_4$ were increased in barley leaves, while only ${SO}^{2-}_4$ increased in corn leaves. After fumigation with 10ppm ${SO}_2$ for 2 hours, barley leaves showed significant decreases in activities of catalase, to 17% peroxidase, to 58%, and polyphenoloxidase, to 88%. Corn leaves showed increases in activities of peroxidase, to 136%, and polyphenoloxidase, to 128%. Absorption spectra of pigments obtained from ${SO}_2$-fumigated leaves were gradually decreased with the fumigation time increases, but the decrease was more significant in barley leaves. Fumigation with 50ppm ${SO}_2$ for 2 hours induced the greatest decomposition in carotenoid, followed by chlorophyll a and then chlorophyll b in barley leaves. The ratio of chlorophyll a/b was decreased from 4.1 to 3.6 in barley leaves, but in corn leaves it was maintained almost a constant level(4.9-4.8). The rate of decomposition of chlorophyll and carotenoid in corn leaves was very slow than those in the barley leaves. Fumigation with 50 ppm ${SO}_2$ for 2 hous, decreased the protein content of barley leaves to 59%, and that of corn leaves to 89%, and the extent of decrease in protein content was greater than that of pigments in barley and corn leaves. The rate of DCIP9dichlorophenol indophenol) photoreduction in ${SO}_2$-fumigated leaves was decreased to 18 and 67% in barley and corn leaves, respectively. However, DCIP photoreduction was considerably recovered about 32 and 92% with the addition of DPC(diphenylcarbazide) as an exogenous electron donor in barley and corn leaves, respectively.

  • PDF

Reducing the Effect of Ammonia Emissions from Paddy and Upland Soil with Deep Placement of Nitrogen Fertilizers (질소비료의 심층시비에 의한 논과 밭 토양의 암모니아 배출 억제 효과)

  • Sung-Chang Hong;Min-Wook Kim;Jin-Ho Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.230-235
    • /
    • 2022
  • BACKGROUND: Ammonia gas emitted from nitrogen fertilizers applied in agricultural land is an environmental pollutant that catalyzes the formation of fine particulate matter (PM2.5). A significant portion (12-18%) of nitrogen fertilizer input for crop cultivation is emitted to the atmosphere as ammonia gas, a loss form of nitrogen fertilizer in agricultural land. The widely practiced method for fertilizer use in agricultural fields involves spraying the fertilizers on the surface of farmlands and mixing those with the soils through such means as rotary work. To test the potential reduction of ammonia emission by nitrogen fertilizers from the soil surface, we have added N, P, and K at 2 g each to the glass greenhouse soil, and the ammonia emission was analyzed. METHODS AND RESULTS: The treatment consisted of non-fertilization, surface spray (conventional fertilization), and soil depth spray at 10, 15, 20, 25, and 30 cm. Ammonia was collected using a self-manufactured vertical wind tunnel chamber, and it was quantified by the indophenol-blue method. As a result of analyzing ammonia emission after fertilizer treatments by soil depth, ammonia was emitted by the surface spray treatment immediately after spraying the fertilizer in the paddy soil, with no ammonia emission occurring at a soil depth of 10 cm to 30 cm. In the upland soil, ammonia was emitted by the surface spray treatment after 2 days of treatment, and there was no ammonia emission at a soil depth of 15 cm to 30 cm. Lettuce and Chinese cabbage treated with fertilizer at depths of 20 cm and 30 cm showed increases of fresh weight and nutrient and potassium contents. CONCLUSION(S): In conclusion, rather than the current fertilization method of spraying and mixing the fertilizers on the soil surface, deep placement of the nitrogen fertilizer in the soil at 10 cm or more in paddy fields and 15 cm or more in upland fields was considered as a better fertilization method to reduce ammonia emission.