• 제목/요약/키워드: Indoor radon concentration of apartment

검색결과 6건 처리시간 0.019초

실내 체적과 라돈 농도와의 상관관계 연구 (A Study on the Correlation between the Volume of Indoor Space and the Measured Concentration of Indoor Radon)

  • 강성아;한동현;김종일
    • Journal of Radiation Protection and Research
    • /
    • 제32권3호
    • /
    • pp.97-104
    • /
    • 2007
  • 전주시에 소재한 아파트의 큰 방과 작은 방을 대상으로 실내 체적과 측정되는 라돈 농도와의 상관 관계를 분석하였다. 또한 실내의 라돈 농도를 측정하여 실내의 시간별 라돈 농도의 변화를 파악하고 이를 토대로 실내 라돈의 년간 피폭선량을 계산하였다. 본 연구를 위하여 각각 8개의 아파트 큰 방과 작은 방을 대상으로 라돈 농도를 측정하였으며, 큰 방의 평균 체적은 $31.59\;m^3$ 그리고 작은 방의 평균 체적은 $16.82\;m^3$이었다. 큰 방의 평균 라돈 농도는 $71.73\;Bq/m^3$, 작은 방의 평균 라돈 농도는 $108.51\;Bq/m^3$로 측정되어 실내 체적과 실내 라돈 농도는 반비례 관계로 나타났다. 밀폐된 실내 라돈 농도의 주 발생원이 건축자재임을 감안하여 건물 벽의 표면적을 체적으로 나누어 계측해 본 결과 표면적/체적의 비가 클수록 측정되는 실내 라돈 농도가 크게 나타났다. 실내 라돈 농도의 하루 중 시간에 따른 변화를 조사한 결과 오전 $8{\sim}10$시에 일 최고 농도($114.5\;Bq/m^3$)를 보였고, 오후 $2{\sim}4$시에 일 최저농도($67.7\;Bq/m^3$)를 나타냈으며, 하루 중 라돈 농도의 변화는 약 $46.8\;Bq/m^3$이었다. 8개 지점의 실내 라돈의 연간 피폭선량을 계산해 본 결과 0.3에서 2.16 mSv/yr사이로 나타나, 일부 아파트의 피폭선량이 국제방사선영향과학위원회(UNSCEAR)가 제시한 수치인 1.3 mSv/yr를 초과했다.

마감재 및 환기를 고려한 공동주택 실내 라돈 농도의 비정상 해석 (Unsteady Analysis of Indoor Radon in Apartment Buildings Considering Finishing Materials and Ventilation)

  • 조현;방승기
    • 한국지열·수열에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.24-31
    • /
    • 2019
  • In this paper, we simulated a new apartment building by using radon emission test values from various building materials used as interior finishing materials. The simulations evaluated the radon concentration in the room according to the radon emissions and the ventilations for each type of finishing material (gypsum board, stone, tile and concrete). Overall concrete finish simulation case showed the highest concentration than the case using other materials due to the effect of wall area at the center of each room and the mean radon concentration at 1.5 m above the floor was slightly lower than the mean value at each center. In the case of the porch, pantry and bathroom, the radon concentration was high even when the same materials were used as in the other rooms.

Alpha Track Detector를 이용한 실내외 라돈 농도조사에 관한 연구 (A Survey of Indoor and Outdoor Radon Concentrations by Alpha Track Detector in Korea)

  • 김윤신;이철민;김현탁
    • 한국환경보건학회지
    • /
    • 제28권5호
    • /
    • pp.71-76
    • /
    • 2002
  • A survey of radon concentrations in both indoor and outdoor atmospheres was carried out using EIRM and Cup Monitor for the period of February 1996 to March 1997. EIRM were used to measure the indoor and outdoor radon concentration at five major cities university. Cup Monitor were also used to measure the indoor radon concentrations at shopping store, office building, apartment, hospital and house in Seoul. The mean indoor and outdoor radon concentrations at the five major cities(Seoul, Daegu, Daejon, Cwangiu and Busan) were 24.1 Bq/m$^3$and 8.62 Bq/m$^3$, respectively. The ratio of indoor to outdoor radon concentrations ranged front 1.7 to 3.9. Inspection of its seasonal distribute pattern indicates the enhancement during winter relative to summer, consistently for both indoor and outdoor air. The results of the survey showed that the concentrations in basements were clearly higher than those in usual living/working places.

공동주택의 실내공기환경 개선에 관한 연구 (A Study on the Improvement of Indoor Air Quality in Apartment Buildings)

  • 이상형;박진철;이언구
    • 설비공학논문집
    • /
    • 제8권3호
    • /
    • pp.397-412
    • /
    • 1996
  • This study aims to present the fundamental strategies to improve the Indoor Air Quality (IAQ) in apartment buildings. To investigate the concentration of indoor air pollutants such as radon, formaldehyde, and VOCs, both the document survey and the field measurement were conducted. In addition, to identify the source of the air pollutants, the laboratory experiment was carried out for various building materials. Finally, the minimum period to be reserved befor3e building occupation to ensure healthy IAQ, which largely depends on the ventilation rates, was simulated using a simple compuer program. The results of this study can be summarized as follows: 1. In case of newly-constructed apartment houses, concentrations of formaldehyde, VOCs and radon were found to exceed the standard. Meanwhile, at existing apartment houses, concentrations of VOCs, particularly toluene and xylene, highly exceeded the standasrd level. Concentrations of formaldehyde and radon, however, had been lowered according to the duration of occupation. 2. The laboratory experiment of concentration of pollutants per square meter of building material surface area showed that radon gas was much emitted from the gypsumboard; formaldehyde from flooring and wallpaper; and VOCs from paints and kitchen furnishings. The emission rates of formaldehyde and VOCs were proportional to air temperature. 3. According to the simulation of the minimum period to be reserved before occupation, newly-constructed airtight houses required about 190-200 days, and naturally ventialted houses with fully-open-windows required about 20-45days, in order to keep the level of radon gas lower than standard. Therefore, with the current practice, the date of occupation should be delayed for about 15 days.

  • PDF

대학가 주변 원룸의 라돈(radon) 농도 평가 (Radon Concentration Assessment of Studio Apartments surrounding a University)

  • 이석용;이영무;박지현;김순신;홍가연;안호기;양원호
    • 한국환경보건학회지
    • /
    • 제39권2호
    • /
    • pp.138-143
    • /
    • 2013
  • Objective: Building materials can generate radon in indoor environments. This study aims to assess the radon concentrations of studio apartments around a university. Methods: 25 studio apartments around a University in Gyoungsan, Korea were measured for concentrations of radon. We evaluated the radon concentrations by using short-term continuous radon monitors at the studio apartments around the university, and analyzed the correlation between indoor radon concentration and factors affecting it, such as year of construction. Results: The average concentration of radon was 2.03 pCi/L(75.11 $Bq/m^3$)${\pm}1.34$ in the studio apartments. This radon level was lower than the radon standard for public use facilities in Korea and US EPA's standard of 4 pCi/L. However the measured radon levels were much higher than those previously reported in conventional dwellings. There was a statistically correlation between year of construction and radon concentrations in studio apartment buildings. Conclusion: It is suggested that recently built studio apartments might be constructed with phosphogypsum board that features higher radon emissions, and occupants are highly exposed to radon.

The effect of ventilation on reducing the concentration of hazardous substances in the indoor air of a Korean living environment

  • Kim, Hyunjoo;Kim, Jin Seog;Lee, Jongman;Kim, Dalho
    • 분석과학
    • /
    • 제33권1호
    • /
    • pp.49-57
    • /
    • 2020
  • Controlling the quality of indoor air is important in order to maintain a healthy life. In this study, we investigated the correlation between the hazardous substance concentration of indoor air and circulation based on different ventilation methods in the apartment, which is one of the representative housing types in Korea. As target substances, we considered the hazardous substances which are generated during the cooking process and radon gas which is originated from building materials. We measured the concentrations of carbon dioxide and fine particles in relation to type of food and ventilation methods in order to determine the change in the concentration levels of hazardous substances which are generated during the cooking process. On the other hand, we measured the concentration of radon gas before and after letting fresh air into a room through windows in order to determine the change in the concentration level of radon gas which is originated from building materials. The results show that turning on the ventilation fan plays a major role in reducing the concentration levels of hazardous substances in the kitchen, and that it is more effective to turn on the ventilation fan during cooking than after cooking to prevent the diffusion of hazardous materials produced by cooking through the indoor air. Also, the results indicate that letting fresh air into a room through windows more than one time a day is necessary to reduce the concentration level of radon gas in the room to safe concentration range.