• Title/Summary/Keyword: Indoor materials

Search Result 610, Processing Time 0.026 seconds

Indoor radon and thoron from building materials: Analysis of humidity, air exchange rate, and dose assessment

  • Syuryavin, Ahmad Ciptadi;Park, Seongjin;Nirwono, Muttaqin Margo;Lee, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2370-2378
    • /
    • 2020
  • Building materials contribute significantly to the indoor radon and thoron levels. Therefore, parameters that influence the exhalation rates of radon and thoron from building material need to be analyzed closely. As a preliminary study, the effects of humidity on exhalation rates were measured using a system with an accumulation chamber and RAD7 detector for Korean brick, Korean soil, and Indonesian brick. Resulting doses to a person who resides in a room constructed from the building materials were assessed by UNSCEAR method for different air exchange rates. The measurements have revealed that Korean brick exhaled the highest radon and thoron while Indonesian brick exhaled the lowest thoron. Results showed that for a typical low dense material, radon and thoron exhalation rate will increase until reached its maximum at a certain value of humidity and will remain saturated above it. Analysis on concentration and effective dose showed that radon is strongly affected by air exchange rate (ACH). This is showed by about 66 times decrease of radon dose from 0.00 h-1 to those of 0.50 h-1 ACH and decrease by a factor of 2 from 0.50 h-1 to those of 0.80 h-1. In case of thoron, the ACH doesn't have significant effects on effective dose.

Impact of Indoor Air Quality on the Eye Conditions of Occupants in Newly-built University Buildings (새 학교 건물 내 실내공기질이 재실자의 안구에 미치는 영향)

  • Kim, Woo-Jae;Kim, Sun-Duk;Kim, Hyojin;Kim, Ho-Hyun;Lee, Cheol-Min;Kim, Yoon-Shin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.2
    • /
    • pp.201-207
    • /
    • 2011
  • Purpose: This study was to find out the influence on eyes of indoor air quality in college students taking course, such as Sick-building syndrome symptoms and effects on the eye in new-built university buildings. Methods: We selected a new building in a university located in Metro Seoul and college students in a department for the study. The number of total participants was 33, to whom questionnaire surveys were conducted in advance to check individual traits (gender, age, whether to smoke, whether to wear contact lenses, or whether to drink). The first questionnaire surveys and checking of ocular symptoms to first indoor hazardous materials were conducted in October and two months later the second surveys and checking were carried out in December. The indoor air quality was measured when conducting the first questionnaire surveys and the second questionnaire surveys; especially measurements of gaseous materials such as aldehydes and VOCs in the indoor air were conducted. Results: Indoor air quality of the new building was as follows: formaldehyde level was 22.90 ${\mu}g/m^3$ in the first measurement and 16.79 ${\mu}g/m^3$ in the second measurement. In addition, most materials showed higher value in the first measurement. The level of TVOC was statistically significant (p<0.05) decreased on 448.54 ${\mu}g/m^3$ in the first and 62.55 ${\mu}g/m^3$ in the second. In clinical assessments to check ocular symptoms caused by eye irritations, dry eye syndrome was found in the first and second exposures. When comparing the first and second assessments, dry eyes deteriorated in the morning of the second attempt compared to the first one. Conclusions: In the survey of ocular symptoms and the measurement of indoor air quality, the level of formaldehyde was measured higher in the second attempt than the first; thus, it was confirmed the influence of indoor air quality in a new building upon ocular symptoms of occupants.

Development of Anti-Insect Mortar and Concrete using Microcapsule (마이크로 캡슐을 이용한 방충 기능성 모르타르 및 콘크리트의 개발)

  • 박석균;유완재;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.523-526
    • /
    • 2003
  • Functions of the building structures are recently expended, because the structures are getting larger and people's indoor staying times are getting longer. Therefore, various functional materials such as yellow mud, carbon soot, and jade are widely used. But functions of those materials have not permanent and continued an effect. Specially, the development of construction materials containing anti-insect is highly important to delight the environment of residence. This research try to examine to develop the mortar and concrete which contain microcapsules with long-term effect of anti-insect.

  • PDF

A Volatile Organic Compound Sensor Using Porous Co3O4 Spheres

  • Kim, Tae-Hyung;Yoon, Ji-Wook;Lee, Jong-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.134-138
    • /
    • 2016
  • Porous $Co_3O_4$ spheres with bimodal pore distribution (size: 2-3 nm and ~ 30 nm) were prepared by ultrasonic spray pyrolysis of aqueous droplets containing Co-acetate and polyethylene glycol (PEG), while dense $Co_3O_4$ secondary particles with monomodal pore distribution (size: 2-3 nm) were prepared from the spray solution without PEG. The formation of mesopores (~ 30 nm) was attributed to the decomposition of PEG. The responses of a porous $Co_3O_4$ sensor to various indoor air pollutants such as 5 ppm $C_2H_5OH$, xylene, toluene, benzene, and HCHO at $200^{\circ}C$ were found to be significantly higher than those of a commercial sensor using $Co_3O_4$ and dense $Co_3O_4$ secondary particles. Enhanced gas response of porous $Co_3O_4$ sensor was attributed to high surface area and the effective diffusion of analyte gas through mesopores (~ 30 nm). Highly sensitive porous $Co_3O_4$ sensor can be used to monitor various indoor air pollutants.

A Prediction of Pollutant Emission Rate using Numerical Analysis and CFD in Double-Layered Building Materials (수치해석 및 CFD를 이용한 소형챔버내 복합건축자재의 오염물질 방출량 예측)

  • Kim, Chang-Nam;Leigh, Seung-Bok;Kim, Tae-Yeon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.277-282
    • /
    • 2006
  • In order to predict the indoor air pollutant, the VOCs emission rate is used through small chamber in the design process. However, the small chamber method has limitations as the convective mass transfer coefficient, the most important factor when predicting VOCs contamination of indoor air, is different between the small chamber result and the measured data in the actual building. Furthermore, the existing studies which analyzed mass transfer coefficient in the small chamber were directed on the small chambers developed at the time and FLEC(Field and Laboratory Emission Cell), thus, are different from the current small chamber which has been changed with improvements. The purpose of this study is to determine the emission rate of pollutant in double-layered building materials through the CFD(Computational of Fluid Dynamics) and Numerical analysis based on the mass transfer coefficient on singled-layered building material by using the current small chamber widely used in Korea. Futhermore, this study used the new convective mass transfer coefficient($h_m'$) which indicates the existing convective mass transfer coefficient($h_m$) including VOC partition coefficient(k). Also, formaldehyde was selected as target pollutant.

  • PDF

Affected Model of Indoor Radon Concentrations Based on Lifestyle, Greenery Ratio, and Radon Levels in Groundwater (생활 습관, 주거지 주변 녹지 비율 및 지하수 내 라돈 농도 따른 실내 라돈 농도 영향 모델)

  • Lee, Hyun Young;Park, Ji Hyun;Lee, Cheol-Min;Kang, Dae Ryong
    • Journal of health informatics and statistics
    • /
    • v.42 no.4
    • /
    • pp.309-316
    • /
    • 2017
  • Objectives: Radon and its progeny pose environmental risks as a carcinogen, especially to the lungs. Investigating factors affecting indoor radon concentrations and models thereof are needed to prevent exposure to radon and to reduce indoor radon concentrations. The purpose of this study was to identify factors affecting indoor radon concentration and to construct a comprehensive model thereof. Methods: Questionnaires were administered to obtain data on residential environments, including building materials and life style. Decision tree and structural equation modeling were applied to predict residences at risk for higher radon concentrations and to develop the comprehensive model. Results: Greenery ratio, impermeable layer ratio, residence at ground level, daily ventilation, long-term heating, crack around the measuring device, and bedroom were significantly shown to be predictive factors of higher indoor radon concentrations. Daily ventilation reduced the probability of homes having indoor radon concentrations ${\geq}200Bq/m^3$ by 11.6%. Meanwhile, a greenery ratio ${\geq}65%$ without daily ventilation increased this probability by 15.3% compared to daily ventilation. The constructed model indicated greenery ratio and ventilation rate directly affecting indoor radon concentrations. Conclusions: Our model highlights the combined influences of geographical properties, groundwater, and lifestyle factors of an individual resident on indoor radon concentrations in Korea.

Measurement and Comparative Analysis of Propagation Characteristics in 3, 6, 10, and 17 GHz in Two Different Indoor Corridors (두 가지 서로 다른 실내 복도에서 3, 6, 10, 17 GHz의 전파 특성 측정 및 비교 분석)

  • Seong-Hun Lee;Byung-Lok Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1031-1040
    • /
    • 2023
  • Propagation characteristics in line-of-sight(LOS) paths in 3, 6, 10, and 17 GHz frequency bands were measured and analyzed in two different indoor corridors: second floors of Buildings D2 and E2. The measurement was designed to measure when the receiving antenna moved at 0.5 m intervals from 3 m to 30 m, while the transmission antenna was fixed. The analysis of the two indoor corridors was compared by applying basic transmission loss, root mean square (RMS) delay spread, and K-factor. For basic transmission loss, the loss coefficient of the floating intercept path loss model was higher in the indoor corridor of Building E2 than in that of Building D2. Similarly, the RMS delay spread in the time domain was greater in the indoor corridor of Building E2. However, the indoor corridor of Building D2 exhibited higher K-factor in the 3, 6, and 17 GHz bands with lower wave propagation in the 10 GHz band. Despite the 2 indoor corridors being identical, the propagation characteristics varied due to different internal structures and materials. The results provide measurement data for ITU-R Recommendations regarding various indoor environments.

Research on Durability Assessment of Asbestos Stabilizer for Asbestos-containing Ceiling Materials (석면 함유 천장재에 대한 석면 안정화제 내구성 평가 연구)

  • Ha, Joo-Yeon;Shin, Hyun-Gyoo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.1
    • /
    • pp.18-27
    • /
    • 2020
  • Objectives: For testing asbestos stabilizer products which are used for the maintenance and management of asbestos-containing materials, durability assessment should accompany the evaluation of basic properties and performance. Therefore, in this study we designed a testing method and constructed a database of durability performance, thereby providing basic data for reliability studies of asbestos stabilizer. Methods: Since the ceiling materials targeted in this study are interior materials, test conditions of 95% relative humidity and 60℃ temperature were designed in consideration of the effect of high relative humidity in summer and seasonal indoor temperatures. Plate-shaped specimens treated with asbestos stabilizers were maintained in a thermo-hygrostat for 5, 10, and 20 days, and then the asbestos scattering prevention rate was measured by air erosion testing. Results: The scattering concentration tended to increase with time under the single humidity condition, and exceeded the indoor air quality standard of 0.01 f/cc, during the 20 days of maintenance. On the other hand, there was little change according to the temperature condition. In the case of a complex condition with temperature and humidity, the results were similar to the humidity test, but the scattering concentration increased more sharply at 20 days. Conclusions: The main deterioration factor that affects the durability of asbestos stabilizer is humidity, and the deterioration is caused by a mechanism in which the stabilizer coated on the surface is re-dissolved by moisture and evaporates or the coating layer is peeled off, which is accelerated by high temperatures.

Surface Coating of SiO2 on TiO2-natural Zeolite Composite Particles and Its Characterization (실리카 코팅된 TiO2-천연 제올라이트 복합입자 제조와 특성평가)

  • Lim, Hyung-Mi;Jung, Ji-Sook;Lee, Dong-Jin;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.692-697
    • /
    • 2006
  • Deodorization of natural zeolites have been improved not only for polar but also for non-polar pollutants by sucessive ion exchanges of H and Ag ions starting from Korean natural zeolite with high adsorption capacity. The modified zeolites with $TiO_2$ coating on the surface revealed high deodorization and photocatalytic decomposition effects. Further modification was made with $10{\sim}20nm$ silica nano particles coating on the surface, the resulting composite particles of $SiO_2/TiO_2/modified$ natural zeolite revealed not only comparable deodorization but also better durability and resisatnce to color change compared to the $TiO_2$/modified natural zeolite without much compensation of photocatalytic decomposition effect, when the composite particles were exposed to the polypropylene non-woven fiber coated with organic binder. It is expected for the composite particle prepared here to be used as indoor building materials for indoor air quality control.

Analysis of Hygrothermal Performance for Standard Wood-frame Structures in Korea (국내 농어촌 표준 목조주택의 hygrothermal 성능 분석)

  • Chang, Seong Jin;Kang, Yujin;Wi, Seunghwan;Jeong, Su-Gwang;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.440-448
    • /
    • 2016
  • As recent buildings become more air tight, the natural ventilation rate is significantly reduced and it leads to difficulty in removing accumulated moisture in buildings. Hot and humid weather in summer and the large amount of moisture caused by indoor activity are the major factors of moisture problem in Korea. The hygrothermal behavior of building environment has to be considered carefully to reduce condensation risk and mold growth potential, and comfortable indoor environment. In this study, we evaluated hygrothermal behavior of Standard Wood-frame Structure published in the Korea Rural Community Corporation Using WUFI simulation program. The results indicated that the total water contents of wood wall measured in 2014 was lower than wood wall in 2010. As a result of evaluation by separating the farming and fishing areas, Moisture problems in fishing area became larger. The walls had a significant impact on the relative humidity than the temperature each areas. Furthermore, excessive water content problem of the wood-based material was reduced in the wall that could be applied in the fishing villages by changing the outdoor finishing materials. And Mold growth risk on the interior materials could be removed through the different setting of the indoor temperature during summertime.