• 제목/요약/키워드: Indoor materials

검색결과 604건 처리시간 0.027초

Bake-Out에 의한 신축 아파트의 실내 오염물질농도 저감효과 평가 (The Impact of Bake-Out Method on the Reduction of Pollutant Concentration in New Apartments)

  • 방승기;박병윤
    • 설비공학논문집
    • /
    • 제18권4호
    • /
    • pp.335-343
    • /
    • 2006
  • Indoor air pollution has been significantly aggravated due to hazardous pollutants emitted from petrochemical finishing materials in new apartments. Pollutants emitted into indoor environment have significant effects on the health of occupants, causing undesirable symptoms related to sick building syndrome such as headache, dizziness, difficulty in concentration, etc. Therefore, this paper attempted to investigate the reduction effect of bake out on VOCs emission in new apartments. Experiments were carried out in three households, one of which was naturally ventilated. The naturally ventilated showed the lowest indoor pollutant concentration and also showed the highest reduction rate by the use of bake out. The most desirable result was observed when the household was naturally ventilated after bake out. More detailed experiments are expected to be carried out afterwards on the prediction of reduction rate of each pollutant.

오염농도 분포 해석을 통한 공동주택의 자연환기성능 향상을 위한 평면계획 (Planning of Apartment Units for Improving Natural Ventilation Performance based on the Analysis of Indoor Pollutant Concentrations)

  • 김지영;이승희;김태연
    • KIEAE Journal
    • /
    • 제5권3호
    • /
    • pp.41-48
    • /
    • 2005
  • Before occupation of an apartment housing, the builders are required to inform the test result of IAQ to the public. However, there is no simplified method to predict IAQ before measurement of pollutant concentration. In this study, a simplified way of predicting IAQ based on the distribution of indoor pollutant concentration is proposed. 7 different cases of air change rate have been simulated through CFD analysis to get the distribution ratio of each pollutant material and then simplified functions were used with CRIAQ1 values derived from CFD simulation to evaluate by comparing the influence of each material in the indoor pollutant concentration. Again, a lot of efforts which can improve the indoor air quality have been performed. Materials used in indoor space are labeled with their pollutant emission level. Installation of ventilation system in residential buildings will be regulated by a building codes sooner or later. But it is important to understand the fact that layout of walls, location or size of openings will influence the indoor air flow and pollutant concentration. And location of emitting material influences to indoor air pollutants distribution. But until now there is few recognition and consideration of these factors. Therefore, in this paper the effects of these factors is proved and some kind of guideline is made for designers after a comparison of typical apartment floor plan and a new type plan with their average pollutant concentration and its distribution of each room. CFD(Computational Fluid Dynamics) program was used to show the indoor air flow and pollutant concentration distribution. For this purpose, a typical $100m^2$ apartment floor plan was chosen as a case study model and several alternatives were reviewed to improve the IAQ performance. The simulation took place in the condition of natural ventilation through windows.

건축자재 마감구성에 따른 실내공기오염물질 방출특성에 관한 연구 (A Study on the Indoor Air Pollutants Emission Characteristics by Composed Building Materials)

  • 박진철;이언구;유형규
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.3-8
    • /
    • 2005
  • Building parts of Multi-Family Houses are consisted of several building material assembly. Therefore, after selecting building materials with test result of emission intensity and their feature, composed building materials are made equally with actual construction methods, and experimented emission intensity. 7 days after experiment, formaldehyde emission intensity appeared low in an order of Tile Wall, Wood Flooring, Wallpaper, Reum Flooring, Silk Wallpaper, and 20 days after experiment, TVOC emission intensity appeared low in an order of Tile Wall, Reum Flooring, Silk Wallpaper, Wood Flooring, Wallpaper. There was a clear difference in TVOC emission intensity according to kind of building materials. Composed building materials that weight per unit area is big and omission intensity is high, they effect continuously to indoor air because decrement is small.

  • PDF

The effect of ventilation on reducing the concentration of hazardous substances in the indoor air of a Korean living environment

  • Kim, Hyunjoo;Kim, Jin Seog;Lee, Jongman;Kim, Dalho
    • 분석과학
    • /
    • 제33권1호
    • /
    • pp.49-57
    • /
    • 2020
  • Controlling the quality of indoor air is important in order to maintain a healthy life. In this study, we investigated the correlation between the hazardous substance concentration of indoor air and circulation based on different ventilation methods in the apartment, which is one of the representative housing types in Korea. As target substances, we considered the hazardous substances which are generated during the cooking process and radon gas which is originated from building materials. We measured the concentrations of carbon dioxide and fine particles in relation to type of food and ventilation methods in order to determine the change in the concentration levels of hazardous substances which are generated during the cooking process. On the other hand, we measured the concentration of radon gas before and after letting fresh air into a room through windows in order to determine the change in the concentration level of radon gas which is originated from building materials. The results show that turning on the ventilation fan plays a major role in reducing the concentration levels of hazardous substances in the kitchen, and that it is more effective to turn on the ventilation fan during cooking than after cooking to prevent the diffusion of hazardous materials produced by cooking through the indoor air. Also, the results indicate that letting fresh air into a room through windows more than one time a day is necessary to reduce the concentration level of radon gas in the room to safe concentration range.

Design review on indoor environment of museum buildings in hot-humid tropical climate

  • Ogwu, Ikechukwu;Long, Zhilin;Okonkwo, Moses M.;Zhang, Xuhui;Lee, Deuckhang;Zhang, Wei
    • Advances in Computational Design
    • /
    • 제7권4호
    • /
    • pp.321-343
    • /
    • 2022
  • Museum buildings display artefacts for public education and enjoyment, ensuring their long-term safety and the comfort of visitors by following strict indoor environment control protocols using mechanical Heating, Ventilation and Air Conditioning (HVAC) systems to keep the (environmental) variables at a fixed comfort level. Maintaining this requires constant supply of energy currently mostly sourced from the combustion of fossil fuels which exacerbates climate change. However, a review on the effects of the indoor environmental variables on museum artefacts as well as museum visitors revealed that there is no specific point at which artefact deterioration occurs, and that there are wide ranges of conditions that guarantee the long-term safety of artefacts and human comfort. Visits to museum buildings in hot-humid tropical climate of Nigeria revealed that strict indoor environmental practices were adopted. Even when appropriate micro-climatic conditions are provided for artefacts, mechanical HVAC systems remain necessary for visitor comfort because almost no consideration is given to natural ventilation. With the current global push towards energy management, this paper reviewed passive environmental control practices, architectural design strategies, and discusses the adaptation of double skin façade with jali screens, and the notion of smart materials, which can satisfy the range of requirements for the long-term safety of artefacts and levels of human comfort in buildings in hot-humid tropical climate, without mechanical HVAC systems. This review would inspire more discussions on passive, energy efficient, smart and climate responsible popular architecture, challenging current thinking on the impact of the more accepted representative architecture.

전통소재와 자연물을 활용한 조명디자인 개발 연구 (A Study on Development of Lighting Design Utilizing Traditional Materials and Natural Objects)

  • 윤여항;김지수
    • 한국가구학회지
    • /
    • 제28권1호
    • /
    • pp.80-87
    • /
    • 2017
  • As modern society attaches important to a value in mental aspect and characteristics of consumers who become diverse and individualistic, lighting design also changes closely with everyday life. This study suggests a new concept of indoor lighting design, combining natural objects with lattice and Korean paper, one of our representative traditional materials in lighting design used in everyday life. In particular, it was designed with aesthetic sense of traditional culture and Korean sentiment besides external effect and function by combining Korean paper with natural objects such as insect and plant, material that could be easily obtain around us. As a result, it is intended to enhance quality of life and pursue happiness by suggesting a new concept of lighting design which is modern, harmonizes with everyday life of modern humans who become individualistic, and can arouse sensibility, overcoming the limitations of traditional lighting in indoor lighting.

실물 주거 시공을 통한 실내공기질에 영향을 미치는 주요 건축자재 및 시공방법에 관한 연구 (A Study on the Major Building Material and Construction Method Influencing to IAQ through Full-Scale House Construction)

  • 유형규;박진철;이언구
    • 설비공학논문집
    • /
    • 제18권3호
    • /
    • pp.262-269
    • /
    • 2006
  • Formaldehyde and total volatile organic compounds (TVOC) from building materials have been known as main causes of IAQ problem in Newly-Constructed Multi-Family Houses. Because Multi-Family Houses are built in large quantities in a similar manner, inappropriate selection of building materials and method will detrimental affect IAQ. This research aims to identify major causes of Indoor Air Pollutants in Multi-Family Houses, by constructing Mock-Up & One-Room House. As a result, self leveling concrete, door, and furniture construction is a major cause of indoor formaldehyde increase, and tile bond is TVOC, and urethane water proof is Etylbenzene, and Xylene.

이산화티탄 광촉매 졸(sol)의 실내환경 코팅에 의한 실내공기질 개선 (Improvement of Indoor Air Quality by Coating of Indoor Materials of $TiO_2$ Photocatalyst Sol)

  • 양원호;김대원;정문호;양진섭;박기선
    • 한국환경보건학회지
    • /
    • 제30권2호
    • /
    • pp.92-97
    • /
    • 2004
  • Three methods for VOCs emissions control in indoor air are reduction at the source, ventilation between indoor and outdoor, and removal. The best alternative should be to replace highly emitting sources with sources having low emissions, but the pertinent information on VOCs is not always available from manufactures. Other ways of improving indoor air quality are needed. It is to increase the outside fresh-air flow to dilute the pollutants, but this method would generally provide only a dilution effect without destruction in residence. An ideal alternative to existing technologies would be a chemical oxidation process able to treat large volumes of slightly contaminated air at normal temperature without additional oxidant such as ozone generator and ion generator. Photocatalytic oxidation(PCO) represents such a process. It is characterized by a surface reaction assisted by light radiation inducing the formation of superoxide, hydroperoxide anions, or hydroxyl radicals, which are powerful oxidants. In comparison with other VOCs removal methods, PCO offers several advantages. The purpose of this study was to explore the possibilities for photocatalytic purification of slightly contaminated indoor air by using visible light such as flurescent visible light(FVL). In this study, a PCO of relatively concentrated benzene using common FVL lamps was investigated as batch type and total volatile organic compounds(TVOCs) using a common FVL lamp and penetrated sun light over window. The results of this study shown the possibility of TiO$_2$ photocatalyst application in the area of indoor air quality control.

실내환경 모니터링시스템을 위한 무선 센서네트워크에서의 플러딩 방식의 질의모델 설계 및 구현 (Design and implementation of flooding-based query model in wireless sensor networks for indoor environmental monitoring system)

  • 이승철;정상중;이영동;정완영
    • 센서학회지
    • /
    • 제17권3호
    • /
    • pp.168-177
    • /
    • 2008
  • An indoor environmental monitoring system using IEEE 802.15.4 based wireless sensor network is proposed to monitor the amount of pollutant entering to the room from outside and also the amount of pollutant that is generated in indoor by the building materials itself or human activities. Small-size, low-power wireless sensor node and low power electrochemical sensor board is designed to measure the condition of indoor environment in buildings such as home, offices, commercial premises and schools. In this paper, two query models, the broadcasting query protocol and flooding query protocol, were designed and programmed as a query-based routing protocol in wireless sensor network for an environment monitoring system. The flooding query routing protocol in environment monitoring is very effective as a power saving routing protocol and reliable data transmission between sensor nodes.

대학교 학생식당의 소음저감을 위한 실내소음 실태분석 (Analysis on Indoor Noise Condition of Cafeteria in University Campus)

  • 최윤정;이선아;김혜경
    • 한국실내디자인학회:학술대회논문집
    • /
    • 한국실내디자인학회 2007년도 춘계학술대회 논문집
    • /
    • pp.85-88
    • /
    • 2007
  • This research is a case study for improving the sound environmental quality of cafeteria in university campus. The purpose of the study is to investigate the present condition of physical level, type, and source of indoor noise by comparison with a restaurant near campus. Methods were field survey with measurement on equivalent and instant noise level and observation on noise type, and questionnaire survey to 60 students users. Surveys were carried out in the 8th and the 14th of December 2005. The results are as follows. 1) Indoor noise levels of the cafeteria were measured as $67.2{\sim}76.6$(average 73.3) dB(A)Leq5min and $60.3{\sim}90.5$(average 71.2) dB(A), but noise levels of the restaurant were $61.6{\sim}70.4$(average 66.9) dB(A)Leq5min and $59.8{\sim}70.6$(average 64.9) dB(A). 2) The users's responses on major noise type were 'noise by handling equipment and tableware', 'noise by moving chairs', and 'taking noise' in cafeteria, but 'taking noise' and 'background music' in restaurant. 3) It was found that the differences of indoor noise condition between with 2 subjects were caused by finishing materials, kitchen division type, and furniture type.

  • PDF