• Title/Summary/Keyword: Indoor location tracking system

Search Result 85, Processing Time 0.026 seconds

Cost-effective Sensor-based Scalable Automated Conveyance System (저비용 센서 기반의 확장 가능한 자동 운반 시스템)

  • Kim, Junsik;Jung, Woosoon;Lee, Hyung Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • The important goal of the unmanned vehicle technology is on controlling the direction and speed of the vehicle with information acquired from various sensors, without the intervention of the driver, until the vehicle reaches to its destination. In this paper, our focus is on developing an unmanned conveyance system by exploiting low-cost sensing technology for indoor factories or warehouses, where the moving range of the vehicle is limited. To this end, we propose an architecture of a scalable automated conveyance system. Our proposed system includes a number of unmanned conveyance vehicles, and the efficient control mechanism of the vehicles without neither conflicts nor deadlock between the vehicles being simultaneously moved. By implementing the real prototype of the system, we successfully verify the efficiency and functionality of the proposed system.

Realistic Seeing Through Method and Device Through Adaptive Registration between Building Space and Telepresence Indoor Environment

  • Lee, Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.101-107
    • /
    • 2020
  • We propose a realistic seeing through visualization methods in mixed reality environment. When a user wants to see specific location beyond a wall in indoor environment. The proposed system recognizes and registers the selected area using environment modelling and feature-based tracking. Then the selected area is diminished and the specific location is visualized in real-time. With the proposed seeing through methods, a user can understand spatial relationship of the building and can easily find the target location. We conducted a user study comparing the seeing through method to conventional indoor navigation service in order to investigate the potential of the proposed seeing through method. The proposed seeing through method was evaluated in navigation time in comparison with conventional approach. The proposed method enable users to navigate target locations 30% faster than the conventional approach.

Location Tracking and Remote Monitoring system of Home residents using ON/OFF Switches and Sensors (ON/OFF 스위치와 센서를 이용한 홈 거주자의 위치추적 및 원격모니터링 시스템)

  • Ahn Dong-In;Kim Myung-Hee;Joo Su-Chong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.1
    • /
    • pp.66-77
    • /
    • 2006
  • In this paper, we researched the searching and tracking locations of a home resident using ON/OFF switches and sensors and designed a remote monitoring system. As an implementation environment, this system is developed on the base of the distributed object group framework we have developed from previous works. In order to trace the moving locations of a home resident, we firstly showed a home structure which attaches ON/OFF switches and sensors to home appliances and indoor facilities being fixed in home. Whenever a home resident opens/closes these objects, the signals operated from ON/OFF switches and sensors are sent to a home server system. In this time, the real locations of ON/OFF switches and sensors that the signals are being occurred must be the current location that he/she stays. A home server system provides the functionalities that map the real location of a resident in home to virtual location designed on remote desk-tops or terminals like PDAs, and that construct a healthcare database consisted of moving patterns, moving ranges, momentum for analyzing the given searching locations and times Finally, this system provides these information for remotely monitoring services.

Design and Implementation of Multi-Sensor-based Vehicle Localization and Tracking System (멀티센서 기반 차량 위치인식 시스템의 설계 및 구현)

  • Jang, Yoon-Ho;Nam, Sang-Kyoon;Bae, Sang-Jun;Sung, Tae-Kyung;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.121-130
    • /
    • 2009
  • In this paper, Gaussian probability distribution model based multi-sensor data fusion algorithm is proposed for a vehicular location awareness system. Conventional vehicular location awareness systems are operated by GPS (Global Positioning System). However, the conventional system is not working in the indoor of building or urban area where the receiver is difficult to receive the signal from satellites. A method which is combined GPS and UWB (Ultra Wide-Band) has developed to improve this problem. However, vehicular is difficult to receive seamless location information since the measurement systems by both GPS and UWB convert the vehicle's movement information separately at each sensor. In this paper, normalized probability distribution model based Hybrid UWB/GPS is proposed by utilizing GPS location data and UWB sensor data. Therefore the proposed system provides information with seamless and location flexible properties. The proposed system tested by Ubisense and Asen GPS in the $12m{\times}8m$ outdoor environments. As a result, the proposed system has improved performance for accurateness and connection ability between devices to support various CNS (Car Navigation System).

  • PDF

A Study on the Indoor/Outdoor Positioning System Based on Multiple Sensors (다중 센서 기반의 실내외 측위 시스템에 관한 연구)

  • Hwang, Chi-Gon;Lee, Hae-Jun;Yoon, Chang-Pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.643-644
    • /
    • 2018
  • Recently indoor and outdoor location tracking systems are operated in different ways. The indoor positioning method uses WiFi and BLE beacon positioning, and the outdoor positioning uses GPS and PDR. In this paper, it is a device to measure position by using it. It is used to check whether it is indoors or outdoors when measuring based on a smart phone, A automatic conversion method is needed. When using GPS in the room, it is difficult to distinguish the floor or space. We propose a method to solve this problem.

  • PDF

Analysis of Localization Technology Performance Based on Accumulated RSSI Signal Using Simulation (시뮬레이션을 이용한 누적 RSSI 신호 기반의 항법 기술 성능 분석)

  • Beomju Shin;Taikjin Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.331-339
    • /
    • 2024
  • Reliable and precise indoor localization is crucial for personal navigation, emergency rescue, and monitoring workers indoors. To use this technology in different applications, it is important to make it less dependent on infrastructure and to keep the error as small as possible. Fingerprinting stands out as a popular choice for indoor positioning because it leverages existing infrastructure and works with just a smartphone. However, its accuracy heavily relies on the quality of that infrastructure. For instance, having too few access points or beacons can greatly reduce its effectiveness. To reduce dependence on RF infrastructure, we have developed surface correlation (SC) using accumulated Received Signal Strength Indicator (RSSI) signals This approach constructs a user mask for radio map comparisons using an accumulated RSSI vector and the trajectory of the user, which is estimated through PDR. The location with the highest correlation is considered as the user's position after comparison. Through a simulation, the performance of short RSSI vector-based technology and SC is analyzed, and future directions for the development of SC are discussed.

Implementation of u-Care System Based on Multi-Sensor in u-Home Environment (u-Home 환경에서 멀티센서 기반 u-Care System 구현)

  • Lee, Hee-Jeong;Kang, Sin-Jae;Jang, Hyung-Geun;Jeong, Chang-Won;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.135-147
    • /
    • 2011
  • As the number of elderly people living alone has been increasing in the recent years, systems for their safety have been required, and some related services or pilot systems have been operating. These systems provide the monitoring service for the activities of the elderly people living alone with indoor location tracking technology using the various sensors. However, most systems provide services on expensive infrastructure such as attached tags and mobile devices. In this point, this paper attempts to suggest a system based on low cost sensors to collect event data in home environment. And a main characteristic of the system is that people can monitor the results of provided services through web browser in real time and the system can provide related context information to guardians and health care managers through SMS of mobile phone.

Water Jet Experiment of Automatic Fire-tracking Water Cannon Facility combined with Indoor Hydrant Facility in Road Tunnels (도로터널의 옥내소화전설비 겸용 자동화점추적 방수총설비의 방수실험)

  • Kim, Chang-Yong;Kong, Ha-Sung
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.92-98
    • /
    • 2019
  • To determine if water-jet nozzle moves and water jetting are effective according to the location of the fire, this study examined the automatic fire-tracking water cannon system and aan indoor hydrant system, such as water jet centered directivity, water jet range maintainability and water jet shape uniformity. First, an examination to find the center of fire accurately from this system design showed that the water jet centered test was accurate. Second, the water jet range test results showed that when water is jetted at the maximum water jet radius, the water jet shows an inaccurate result but within the allowable tolerance range. Finally, the water-jet shape test result confirmed that there are no problems in setting the block from the algorithm design.

A Study on Development of Indoor Object Tracking System Using N-to-N Broadcasting System (N-to-N 브로드캐스팅 시스템을 활용한 실내 객체 위치추적 시스템 개발에 관한 연구)

  • Song, In seo;Choi, Min seok;Han, Hyun jeong;Jeong, Hyeon gi;Park, Tae hyeon;Joeng, Sang won;Kwon, Jang woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.192-207
    • /
    • 2020
  • In industrial fields like big factories, efficient management of resources is critical in terms of time and expense. So, inefficient management of resources leads to additional costs. Nevertheless, in many cases, there is no proper system to manage resources. This study proposes a system to manage and track large-scale resources efficiently. We attached Bluetooth 5.0-based beacons to our target resources to track them in real time, and by saving their transportation data we can understand flows of resources. Also, we applied a diagonal survey method to estimate the location of beacons so we are able to build an efficient and accurate system. As a result, We achieve 47% more accurate results than traditional trilateration method.

Improvement of Indoor Positioning Accuracy using Smart LED System Implementation (스마트 LED 시스템을 이용한 실내위치인식 정밀도 개선)

  • Lee, Dong Su;Huh, Hyeong Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.786-791
    • /
    • 2021
  • In this paper, in order to minimize limitations such as signal interference and positioning errors in existing indoor positioning systems, a smart LED-based positioning system for excellent line-of-sight radio environments and precise location tracking is proposed to improve accuracy. An IEEE 802.4 Zigbee module is mounted on the SMPS board of a smart LED; RSSI and LQI signals are received from a moving tag, and the system is configured to transmit the measured data to the positioning server through a gateway. For the experiment, the necessary hardware, such as the gateway and the smart LED module, were separately designed, and the experiment was conducted after configuring the system in an external field office. The positioning error was within 70cm as a result of performing complex calculations in the positioning server after transmitting a vector value of the moving object obtained from the direction sensor, together with a signal from the moving object received by the smart LED. The result is a significantly improved positioning error, compared to an existing short-range wireless communications-based system, and shows the level at which commercial products can be implemented.