• Title/Summary/Keyword: Indoor fire hydrant system

Search Result 12, Processing Time 0.015 seconds

Analysis of the Working Conditions of Fire Protection Systems in the Goyang Bus Terminal Building Fire (고양종합터미널화재 시 소방시설의 작동실태 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.95-107
    • /
    • 2018
  • This study analyzed the working conditions of the fire protection system in the Goyang Bus Terminal fire based on the fire investigation results. The results were as follows. First, extinguishing using an indoor fire hydrant was not attempted immediately after the fire burned the ceiling urethane foam. Second, a sprinkler alarm valve was turn off and did not work in the repair work space of the 1st basement. On the other hand, the sprinklers in the $2^{nd}$ basement, $1^{st}$ floor, $2^{nd}$ floor, and $3^{rd}$ floor worked and prevented the fire from moving to stories other than the $1^{st}$ basement. Third, although an exit light worked normally, it was not installed in the exit from the waiting room in the $2^{nd}$ floor to the bus stop. This resulted in many casualties. Fourth, although a fire receiver sent an electrical signal to the fan controller of the smoke control system, it was treated manually in the fan controller and the fan in the $2^{nd}$ floor did not work.

Development of remote control automatic fire extinguishing system for fire suppression in double-deck tunnel (복층터널 화재대응을 위한 원격 자동소화 시스템 개발 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Yangkyun;Park, Byoungjik;Kim, Whiseong;Park, Sangheon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.167-175
    • /
    • 2019
  • To effectively deal with the fire in tunnel which is mostly the vehicle fire, it's more important to suppress the fire at early stage. In urban tunnel, however, accessibility to the scene of fire by the fire fighter is very limited due to severe traffic congestion which causes the difficulty with firefighting activity in timely manner and such a problem would be further worsened in underground road (double-deck tunnel) which has been increasingly extended and deepened. In preparation for the disaster in Korea, the range of life safety facilities for installation is defined based on category of the extension and fire protection referring to risk hazard index which is determined depending on tunnel length and conditions, and particularly to directly deal with the tunnel fire, fire extinguisher, indoor hydrant and sprinkler are designated as the mandatory facilities depending on category. But such fire extinguishing installations are found inappropriate functionally and technically and thus the measure to improve the system needs to be taken. Particularly in a double-deck tunnel which accommodates the traffic in both directions within a single tunnel of which section is divided by intermediate slab, the facility or the system which functions more rapidly and effectively is more than important. This study, thus, is intended to supplement the problems with existing tunnel life safety system (fire extinguishing) and develop the remote-controlled automatic fire extinguishing system which is optimized for a double-deck tunnel. Consequently, the system considering low floor height and extended length as well as indoor hydrant for a wide range of use have been developed together with the performance verification and the process for commercialization before applying to the tunnel is underway now.