• Title/Summary/Keyword: Indoor fire hydrant installation

Search Result 4, Processing Time 0.014 seconds

An Analysis on the Effect of Pressure System Installation on the Pipeline to Identify Pressurized Water and Self-inspection Ease in Apartment Building (아파트에 설치하는 옥내소화전 압력계 설치가 배관의 가압수 식별 및 자체점검 용이성 간의 영향 분석)

  • Son, Joo-Dal;Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.1
    • /
    • pp.33-44
    • /
    • 2020
  • This study analyzed how the installation of a pressure gauge in the indoor fire hydrant of an apartment building affected identifying pressurized water in the pipe, making it easier to conduct internal inspection on the fire suppression system, and ensuring reliability of fire suppression. The following are the study's results: First, identifying pressurized water in the indoor firefighting pipe had a positive effect on the installation of a pressure gauge in the indoor fire hydrant. This implies that a higher level of identification of pressurized water in the indoor firefighting pipe had a positive impact on improving the installation and use of a pressure gauge in the indoor fire hydrant. Second, making it easier for the fire safety officer to inspect the fire suppression system had a positive effect on the installation of a pressure gauge in the indoor fire hydrant. This suggests that if it becomes easier for the apartment building's stakeholder to conduct internal inspection or the firefighting facility manager to carry out inspection on the fire suppression system, it would have a positive effect on the installation of a pressure gauge in the indoor fire hydrant. Finally, ensuring reliability in fire suppression had a positive effect on the installation of a pressure gauge in the indoor fire hydrant. This implies that if it becomes easier to identify pressurized water in the indoor firefighting pipe, for the fire safety officer to conduct internal inspection, or for the firefighting facility manager to carry out inspection in accordance with the fire suppression system's internal inspection requirements, it would increase reliability in fire suppression, making it more necessary to install a pressure gauge in the indoor fire hydrant.

Survey Analysis of the Management of Fire Fighting Equipment (소방시설의 관리실태 조사 분석)

  • Mun, Suck-Jin;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.98-103
    • /
    • 2011
  • Currently, domestic architecture has applied the building fire-fighting equipments to most buildings except conventional houses, villas and facilities, and so on. However, the use of fire-fighting equipments what are not working properly result in a human life and property damages consistently like a fire of Icheon warehouse facilities, Korea cold storage, the tragic incident of subway in Daegu and the recent issue of a fire in the high-rise efficiency apartment, etc. In this study, I'm trying to seek solutions by taking research on the actual condition of fire alarming system, fire escaping equipment, Indoor Fire Hydrant Installation.

A Study on the Decompression Performance by the Orifice Diameter (오리피스의 직경에 따른 감압성능에 관한 연구)

  • Park, Bong-Rae;Yun, Ki-Jo;Jang, Kyeong-Nam;Choi, Jung-Ung;Baek, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.57-63
    • /
    • 2012
  • The modern trend for high-rise buildings makes the application of fire protection systems difficult and the current systems have a limitation to provide appropriate functions. Indoor hydrant systems are fire suppression systems installed in most buildings that require valves, hoses, and nozzles to be manually operated in the event of a fire. Therefore, high discharge pressure can cause difficulty in the operation of indoor fire hydrant systems and damage to hoses due to a high reaction force. To prevent these problems, the pressure is reduced and decompression valves are commonly installed at angle valves which are the discharge points of indoor hydrants. In the case of high-rise buildings, however, there are cases where stable operation is difficult even with the installation of decompression valves. To verify this, we have measured the decompression performance by the orifice diameter and calculated the reaction force. Results of the study showed that decompression valves need to be produced in different sizes to provide stable decompression where high pressure is required as in high-rise buildings.

Development of remote control automatic fire extinguishing system for fire suppression in double-deck tunnel (복층터널 화재대응을 위한 원격 자동소화 시스템 개발 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Yangkyun;Park, Byoungjik;Kim, Whiseong;Park, Sangheon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.167-175
    • /
    • 2019
  • To effectively deal with the fire in tunnel which is mostly the vehicle fire, it's more important to suppress the fire at early stage. In urban tunnel, however, accessibility to the scene of fire by the fire fighter is very limited due to severe traffic congestion which causes the difficulty with firefighting activity in timely manner and such a problem would be further worsened in underground road (double-deck tunnel) which has been increasingly extended and deepened. In preparation for the disaster in Korea, the range of life safety facilities for installation is defined based on category of the extension and fire protection referring to risk hazard index which is determined depending on tunnel length and conditions, and particularly to directly deal with the tunnel fire, fire extinguisher, indoor hydrant and sprinkler are designated as the mandatory facilities depending on category. But such fire extinguishing installations are found inappropriate functionally and technically and thus the measure to improve the system needs to be taken. Particularly in a double-deck tunnel which accommodates the traffic in both directions within a single tunnel of which section is divided by intermediate slab, the facility or the system which functions more rapidly and effectively is more than important. This study, thus, is intended to supplement the problems with existing tunnel life safety system (fire extinguishing) and develop the remote-controlled automatic fire extinguishing system which is optimized for a double-deck tunnel. Consequently, the system considering low floor height and extended length as well as indoor hydrant for a wide range of use have been developed together with the performance verification and the process for commercialization before applying to the tunnel is underway now.