• Title/Summary/Keyword: Indoor dust

Search Result 240, Processing Time 0.036 seconds

PM10 and Associated Trace Elements in the Subway Cabin of Daejeon by Instrumental Neutron Activation Analysis (기기 중성자방사화 분석을 이용한 대전 지하철 객차 내 PM10과 미량성분의 특성)

  • Jeong, Jin Hee;Lim, Jong Myoung;Lee, Jin-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.459-467
    • /
    • 2016
  • In order to assess the pollution status and distribution characteristics of PM and PM-bound species, PM10 samples were collected using mini-volume air sampler at the subway cabin in Daejeon city. Measurements of about 24 elements including toxic metals (e.g., As, Cr, Mn, V, Zn) in PM10 were made by instrumental neutron activation analysis and X-ray fluorescence. The average PM10 concentration was $59.3{\pm}14.5{\mu}g/m^3$ in the subway cabin with a range of 42.2 to $97.4{\mu}g/m^3$, while the associated elemental concentrations were varied in the range of $10^{-3}$ to $10^5ng/m^3$. It was found that the concentration of Fe ($12.5{\mu}g/m^3$) was substantially higher than any other element. The Fe concentration was apportioned by about 20% of the PM10 concentration. The results of factor analysis indicate that there are no more than six sources in the cabin (e.g., brake-nonferrous metal particle, resuspended rail dust, fuel combustion, vehicle exhaust, black carbon, Cr-related).

Evaluation of the Usability of Micro-Sensors for the Portable Fine Particle Measurement (생활 속 미세먼지 영향평가를 위한 소형센서의 신뢰성 및 활용성 평가)

  • Kim, Jinsu;Jang, Youjung;Kim, Jinseok;Park, Minwoo;Bu, Chanjong;Lee, Yungu;Kim, Younha;Woo, Jung-Hun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.4
    • /
    • pp.378-393
    • /
    • 2018
  • As atmospheric fine dust problems in Korea become more serious, there are growing needs to find the concentration of fine particles in indoor and outdoor areas and there are increasing demands for sensor-based portable monitoring devices capable of measuring fine dust concentrations instantly. The low-cost portable monitoring devices have been widely manufactured and used without the prescribed certification standards which would cause unnecessary confusion to the concerned public. To evaluate the reliability those devices and to improve their usability, following studies were conducted in this work; 1) The comparisons between sensor-based devices and comparison with more accurate devices were performed. 2) Several experiments were conducted to understand usefulness of the portable monitoring devices. As results, the absolute concentration levels need to be adjusted due to insensitivity of the tiny light scattering sensors in the portable devices, but their linearity and reproducibility seem to be acceptable. By using those monitoring devices, users are expected to have benefits of recognizing the changes of concentration more quickly and could help preventing themselves from the adverse health impacts.

Health Risk Factors and Ventilation Improvements in Welding Operation at Large-sized Casting Process (대형 주물공정 용접작업장의 건강 위해인자 및 환기 개선)

  • Jung, Jong Hyeon;Jung, Yu Jin;Lee, Sang Man;Lee, Jung Hee;Shon, Byung Hyun;Lim, Hyun Sul
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.171-178
    • /
    • 2014
  • In this study we have examined the health risk factors and analyzing data of laborers working at the welding operation at large-sized casting process. In order to improve the working environment of workplace, an effective ventilation method was proposed after performing CFD (computational fluid dynamics) modeling and measurement of pollutants. As a result of examining the health risk factors of workers, oxidized steel dust is the main pollution source in the company A, welding fume in the companies B and C, and welding fume and oxidized steel dust in the company D. The fume concentration in the workers' breathing zone was $0.05{\sim}4.37mg/m^3$, and the fume concentration in the indoor air at the welding process was $0.13{\sim}7.54mg/m^3$. From a result of CFD, a local exhaust with an exhaust duct adjacent to welding point was found to be most effective in case of the exhaust process. In case of air supply, we found that a desired location of air supply fan would be at the end of the opening. If a standardizing the ventilation system for tunnel-type semi-enclosed space at a large-sized casting process is introduced in welding work places in the future, it would be more effective to protect the health of welding workers working at the casting industry and shipbuilding industry and improve the work environment.

Odor Removal Efficiency of Biofilter Ducting Systems in Indoor Pig House (바이오 필터를 이용한 비육돈사 배기덕트 시설의 악취저감 효과)

  • Song, J.I.;Choi, H.L.;Choi, H.C.;Kwon, D.J.;Yoo, Y.H.;Jeon, J.H.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.195-200
    • /
    • 2007
  • Management of odors is essential to swine industry in the Republic of Korea. This study was conducted to evaluate the odor removal efficiency of biofilter ducting systems. Rice straw and auto clave concrete(ALC) were used as filter medium. The ventilation fans(5 units, diameter: 500 mm) at the side wall of a growing pig housing were connected to a biofilter using a duct. The size of a biofilter is $2.5{\times}2{\times}1.2(W{\times}L{\times}H)$. The air velocities at the 300 mm above rice straw and ALC were 0.77 and 0.56 m/s, respectively. Ammonia concentration at the outlet of rice straw and ALC media were 2 and 3 ppm, respectively. Dust concentrations were also measured. The dust concentrations of rice straw and ALC were 93, $32\;mg/m^3$, respectively. There was no significant difference between filter mediums in terms of carbon dioxide concentrations(rice straw: 320, ALC: 270 mg/l). The concentration of hydrogen sulfide was stable over the experimentation. The actual concentrations of hydrogen sulfide were 4, 3 and 3 ppm at the days of 7, 21 and 36, respectively. These results suggest that biofilter ducting systems may remove odors from pig house effectively.

  • PDF

Investigation on the SARS-CoV-2 RNA and PM-2.5 inside Public Transportations in Seoul (서울시 대중교통 내 SARS-CoV-2 RNA와 PM-2.5 오염도 실증연구)

  • Seo, Minjeong;Hong, Juhee;Rhee, Hojun;Park, Jinsol;Lim, Hakmyeong;Park, Myung Kyu;Min, Byungchul;Park, Eun Sun;Lee, Sanghoon;Kim, Hanjun;Ha, Kwangtae;Kwon, Seungmi;Shin, Jinho;Lee, Jaein;Hwang, Youngok;Oh, Younghee;Shin, Yongseung
    • Particle and aerosol research
    • /
    • v.18 no.2
    • /
    • pp.23-35
    • /
    • 2022
  • Recently, passengers using public transport are concerned about the effects of COVID-19 and fine dust. Therefore, from February 2020 to February 2021, we investigated whether SARS-CoV-2 RNA was detected even after disinfection in 55 public transportation places visited by confirmed patients in Seoul. 34 air samples and 702 object surface samples were collected and tested with RT-PCR, one surface sample was positive. In addition, preemptive investigations were conducted in 22 subway trains that passengers were being on board at that time. 1,018 preemptive tests were performed, and all were negative. Although PM-2.5 is dangerous in itself, it can be a potential carrier of viruses. It seemed that a solution was needed as one line continuously exceeded the criteria of PM-2.5. Through this study, it is judged that cluster infection in public transportation can be prevented if efforts to reduce the concentration of fine dust, appropriate disinfection management, and personal disinfection such as wearing a mask in public transportations.

Exposure Assessment of Hazardous Substances in Small Academy of Children's Activity Zones (어린이 주요활동공간 중 소규모학원 내 유해물질 노출 평가)

  • Kim, Ho-Hyun;Lee, Jeong-Hun;An, Sun-Min;Lee, Jae-Young;Choi, In-Seak;Yoo, Si-Eun;Jung, Da-Young;Lee, Chul-Woo;Park, Choong-Hee
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.3
    • /
    • pp.283-292
    • /
    • 2018
  • Objectives: This study was conducted to identify hazardous factors that reflect the characteristics of the academy and to provide basic data of environmental safety standard. Methods: Heavy metals, volatile organic compounds, formaldehyde, pesticides and phthalates were measured in 20 academies, which were supplementary, music, art and physical education institutes. Results: In case of heavy metals, the 12 locations were detected for lead (Pb) over the standard value, and 15 locations were exceeded for the total heavy metal. In six locations, the concentrations of volatile organic compounds were exceeded the standard value of $400{\mu}g/m^3$, and two locations for formaldehyde were exceeded the standard value of $100{\mu}g/m^3$. The most commonly detected agents in the air dust were chlorpyrifos and diazinon. The concentrations of DEHP, DINP, and DBP were detected and exceeded in several academies, The risk assessment results showed that HCHO as carcinogen had a safety level of 10-7 to 10-6, and DEHP and DINP as non-carcinogens had a safety level as assessed to be under than 0.1. Conclusions: Through the investigation of long-term environmental and health effects related laws on academies, indoor air quality management might be needed because there were cases of exceeding standard.

Identification of PM10 Chemical Characteristics and Sources and Estimation of their Contributions in a Seoul Metropolitan Subway Station (서울시 지하역사에서 PM10의 화학적 특성과 오염원의 확인 및 기여도 추정)

  • Park, Seul-Ba-Sen-Na;Lee, Tae-Jung;Ko, Hyun-Ki;Bae, Sung-Joon;Kim, Shin-Do;Park, Duckshin;Sohn, Jong-Ryeul;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.74-85
    • /
    • 2013
  • Since the underground transportation system is a closed environment, indoor air quality problems may seriously affect many passengers' health. The purpose of this study was to understand $PM_{10}$ characteristics in the underground air environment and further to quantitatively estimate $PM_{10}$ source contributions in a Seoul Metropolitan subway station. The $PM_{10}$ was intensively collected on various filters with $PM_{10}$ aerosol samplers to obtain sufficient samples for its chemical analysis. Sampling was carried out in the M station on the Line-4 from April 21 to 28, July 13 to 21, and October 11 to 19 in the year of 2010 and January 11 to 17 in the year of 2011. The aerosol filter samples were then analyzed for metals, water soluble ions, and carbon components. The 29 chemical species (OC1, OC2, OC3, OC4, CC, PC, EC, Ag, Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Si, Ti, V, Zn, $Cl^-$, $NO_3{^-}$, $SO_4{^{2-}}$, $Na^+$, $NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) were analyzed by using ICP-AES, IC, and TOR after proper pretreatments of each sample filter. Based on the chemical information, positive matrix factorization (PMF) model was applied to identify the $PM_{10}$ sources and then six sources such as biomass burning, outdoor, vehicle, soil and road dust, secondary aerosol, ferrous, and brakewear related source were classified. The contributions rate of their sources in tunnel are 4.0%, 5.8%, 1.6%, 17.9%, 13.8% and 56.9% in order.

Deterioration and Microclimate in the Shelter for the Gaetaesajiseokbulibsang (Standing Triad Buddha Statues in Gaetaesaji Temple Site), Nonsan, Korea (논산 개태사지석불입상의 손상도와 보호각 내부의 미기후 환경)

  • Kim, Ji-Young;Park, Sun-Mi;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.25 no.2
    • /
    • pp.179-196
    • /
    • 2009
  • The Gaetaesajiseokbulibsang (Treasure No. 219) consists of light gray and coarse to medium-grained granodiorite with feldspar phenocrysts in part. Magnetic susceptibility of the rock material was measured as 12.06(${\times}10^{-3}$ SI unit), being different from the granite($0.19{\times}10^{-3}$ SI unit) in the Mt. Cheonho. This indicates the raw material has been supplied from the outside. As a result of deterioration assessment, exfoliation of the Right Buddha, cement and dust of the Main Buddha were estimated as 35.2%, 21.1% and 25.0%. The ultrasonic velocity was measured as 2850.2m/s(Main Buddha), 2648.4m/s(Left Buddha) and 2644.5m/s(Right Buddha). The compressive strength calculated from the velocity showed low in the Right Buddha among three and the all pedestal parts which corresponds to the result of deterioration assessment. The indoor mean temperature and relative humidity of the shelter were $13.7^{\circ}C$ and 79.0%. It is evaluated that the indoor microclimate was stable and the shelter functioned to reduce climatic fluctuation of the outdoor. However, water condensation was occurred on the surface of the pedestal part during spring and summer, and freezing in winter season might also be done. These factors were probable to be a main cause of the surface exfoliation of the Triad Buddha Statues. Therefore, dehumidification and heating system in the shelter should be applied to prevent further deterioration.

  • PDF

Properties of Harmful Substances Absorption Eco-friendly Artificial Stone Containing Basalt Waste Rock (현무암 폐석을 첨가한 유해물질 흡착 친환경 인조석재의 특성)

  • Pyeon, Su-Jeong;Gwon, Oh-Han;Kim, Tae-Hyun;Lee, Sang-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.431-438
    • /
    • 2016
  • Recently, Both rapid economic growth and high-quality native finishing materials demand in buildings such as local infrastructure facilities and cultural facilities have increased along with local quarries. So, increasing local quarries and environmental pollution occurred in quarries get the eyes to damaged area of the surroundings. As an example, carcinogen such as solid formed to fixing asbestos and dust have damaged to local resident. Especially, Radon gas released from asbestos can exist everywhere on earth, released soil and rock as radioactive substances, can be caused lung cancer followed by a smoking. When pollution source to indoor air quality that lacking ventilation rate of the residential building moved in a cycle, human responses such as headache, dizziness, etc. get appear, so on it threatened resident's physical condition. Thus, we need to urgent attention to reduction harmful substance. In the case of radon gas of the pollution source to indoor air quality in housing, it has characteristic that keep on going through half-life released from source, we need to control radon gas source than source removal. We set on vermiculite addition ratio to 10% which has harmful substances adsorption performance, proceed experiment to basalt waste rock addition ratio 50, 60, 70, 80(%). The result of an experiment, based on 'KS F 4035, precast terrazzo', we can be obtainable in the best terrazzo at basalt waste rock addition ratio 70%.

A study on the Development of Low-loss Type Mold Autotransformers (저손실형 몰드 단권변압기 개발)

  • Lee, Jong-Su;Shin, Myung-Ho;Mun, Byung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.92-94
    • /
    • 2003
  • The autotransformer currently used on the electric railway system is made of class A insulation material and uses the paper insulation method. As a power converter supplying power to the trolley wire, the autotransformer is one of critical equipment in the railway system. In the autotransformer, load irregularly changes and overload often occurs. These cause overheating of the autotransformer and facilitate deterioration of the autotransformer resulting in burnout accidents due to insulation breakdown. Also, the current autotransformer has poor insolation and short-circuit strength which often badly affect the service life of the transformer, and needs to improve its quality urgently. To overcome one of existing shortcomings of the mold transformer, manufacturers use epoxy resins that have superior flame retardancy to get rid of fro and explosion possibilities during accidents. Currently, new mold transformers are used in indoor distribution facilities with fire-fighting equipments. Coils molded in epoxy resins do not have their insulation performance compromised by humidity, dust, etc enabling easy inspection and maintenance. Comparing to the oil immersed transformer, the mold transformer does not have any concern about environmental pollutions by oil leak or replacement Therefore, to reduce breakdowns and improve reliability of the autotransformer, it is necessary to develop a new mold autotransformer with low loss suitable for our environment to suppress breakdowns of the autotransformer and improve the reliability. This study is about development of a low-loss mold autotransformer necessitated by reasons mentioned earlier.

  • PDF