• 제목/요약/키워드: Indoor aerosol

Search Result 72, Processing Time 0.027 seconds

A Survey of Characterization Airborne Bio-aerosol Concentration in Public Facilities

  • Kim, Yoon-Shin;Roh, Young-Man;Hong, Seung-Cheol;Lee, Choel-Min;Jun, Hyung-Jin;Kim, Jong-Choel;Song, Min-Kyung
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.273-278
    • /
    • 2005
  • This study was performed to investigate the characteristics of distribution for airborne bio aerosol in 11 public facilities in Seoul from June to July. The collected samples are total suspended bacteria in indoor and outdoor Anderson six stage air sampler by the IAQ standard method of Ministry of Environment in Korea. The concentration of total suspended bacteria in the theater higher than IAQ standards. As the results of the survey, the most high indoor air mean concentration of bacteria $1273CFU/m^3$ was theater and the most high outdoor air mean concentration of bacteria $^229 CFU/m3$was Kindergarten. The mean concentration of bacteria in the theater was higher than the IAQ standards established by the Ministry of Environment, Republic of Korea. Moreover, this study was for investigation a part of indoor air pollution condition in public facilities. It means that this study can't represent fDr all of public facilities. Therefore, we suggest that long and middle term country plan for management of IAQ should be established through long-term and continuous investigation of IAQ condition. Also above consideration in mind, it is suggest that the research for source contribution of the results on these need further study.

  • PDF

Effective Control of Indoor Air Pollutant using VAV/BPFS (VAV/BPFS를 이용한 실내공기 오염물질의 효율적 제어)

  • 최성우
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.327-334
    • /
    • 1998
  • The oil crisis of the 1970s and the rise in oil prices motivated people to implement energy conservation strategies. Buildings were fitted with additional Insulation and reduced ventilation rates. The reduction of mechanical and natural ventilation rate led to Increases In Indoor pollutant concentrations which result- ed In Increased health risks from Indoor exposure to pollutants. The variable-air-volume /bypass fitration system/VAV/BPFS) is a variation of the conventional VAV systems, The VAV/BPFS is an electronically controlled system that provides costegectlve thermal comfort and acceptable indoor air quality Under controlled conditions In a chamber, a series experiments were performed to compare the ability of a VAV/BPFS to remove Indoor aerosol concentration and to reduce energy consumption no that ability of conventional VAV system. Results show that the VAV/BPFS Increases the effective ventilation rate and removes indoor air pollutant, and maintains acceptable indoor air Quality without sacrificing energy consumption.

  • PDF

Particle Emission Characteristics and Measurement of Ultrafine Particles from Laser Printer (사무용기기에서 발생되는 미세입자 측정 및 분석방법 연구)

  • Lee, Kyung Hwan;Kim, Sun Man;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.6 no.3
    • /
    • pp.123-129
    • /
    • 2010
  • As the indoor activity increases in recent years, the indoor air quality becomes more important. One of the major contaminants in office space is the copy machines and the laser based printers. These devices usually emit nano-particles and chemical species that may give some health effect. The amount of particles generated by the printers and copy machines depend on printer models, printing speed, toners, papers, humidity and so on. To evaluate the emission rate of nano-particles from Laser Printers, the mass concentration measurement method has been used (BAM, 2004). However, the mass concentration measurement method for nano-particles is tedious and time consuming. Therefore, for the development of a new nano-particle counting method, the nano-particle emission characteristics and size distributions are evaluated.

Size Distribution Characteristics of Particulate Matter Emitted from Cooking (조리과정에서 생성된 미세먼지의 크기분포 특성)

  • Joo, Sang-Woo;Ji, Jun-Ho
    • Particle and aerosol research
    • /
    • v.16 no.1
    • /
    • pp.9-17
    • /
    • 2020
  • The characteristics of particulate matter made from daily cooking at a Korean residential apartment house with three dwellers had been investigated for about 3 months. All data were recorded by an optical particle counter every minute at the kitchen. Types of cooking such as boiling, frying, and grilling that performed in the house were listed. Boiling only was used in 32% cases among total 234 meals. Frying and grilling were 14% and 11%, respectively. From an initial indoor particulate matter smaller than 10 ㎛ in diameter, the increases due to cooking are reported by size. In case of boiling, PM at 1-10 ㎛ size and under 1 ㎛ size little increased. Normally, particles from oil or combustion in a process of frying or grilling increased indoor PM. In a case of grilling, particle mass concentration in a region of 1-10 ㎛ in diameter increased as much as 295 ㎍/㎥. Mass concentration of particles smaller than 1 ㎛ increased as much as 33 ㎍/㎥.

Indoor Air Pollution of a High-rise Apartment Caused by Combustion Sources in Winter (겨울철 연소오염원에 의한 도심 고층 아파트의 실내공기오염)

  • Kim, Jong Bum;Lee, Gwangjae;Ryu, Sung Hee;Lee, Jae Young;Woo, Sung-Ho;Lee, Seung-Bok;Kim, Kyung Hwan;Yun, Seong-Taek;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.10 no.3
    • /
    • pp.119-130
    • /
    • 2014
  • Home is a major living environment of children. In urban area, indoor air at home could be severely influenced by combustion sources such as vehicle exhaust and cooking. In this work, the air quality of a high-rise apartment was investigated by monitoring combustion-related air pollutants at both indoor and outdoor in winter of 2014. From 48-h continuous monitoring data, large amount of $NO_x$ was observed at the balcony of the high-rise apartment during the morning traffic hours. It deteriorated indoor air quality of the apartment. During the cooking activity, high peak episodes of ultrafine particles were seen. It was concluded that effects of vehicle exhaust and cooking activity on the indoor air of the high-rise apartment could be easily checked by $NO_x$ and ultrafine particle indicators, respectively.

Characteristics of Incheon Aerosol during Asian Dust Period in 2004 using Optical Particle Counter (OPC) (광학적 입자계수기를 이용한 2004년 황사기간 인천지역 에어로졸 특성)

  • Jung Chang-Hoon;Cho Yong-Sung;Lee Jong-Tae
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.565-575
    • /
    • 2005
  • The characteristics for the aerosol number distribution was studied during spring, 2004 in Incheon. Optical Particle Counter (OPC, HIAC/ROYCO 5230) was used in order to measure the number concentration of aerosol in the range of $0.3\~25{\mu}m.$. The obtained results were compared with $PM_{2.5}\;and\;PM_{10}$ data during Asian dust events. The results show that the size resolved aerosol number concentration from OPC measurement has a similar tendency with $PM_{10}\;and\;PM_{2.5}$ mass concentration. During Asian dust periods, the number concentrations in large particle $(CH5\~CH8)$ increase more than small particles which diameter is less than $2.23{\mu}m(CH5)$ and the same results were shown when $PM_{10}$ was compared with $PM_{2.5}$ data compared with non-dust days, Consequently, this study shows that size resolved aerosol number concentration from OPC measurement can be used as a useful tool in comparison of mass concentration data.

Effect of light intensity on the ozone formation and the aerosol number concentration of ambient air in Seoul (광도가 서울 대기의 오존 생성 및 에어로졸 수 농도에 미치는 영향)

  • Bae, Gwi-Nam;Park, Ju-Yeon;Kim, Min Cheol;Lee, Seung-Bok;Moon, Kil-Choo;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.4 no.1
    • /
    • pp.9-20
    • /
    • 2008
  • The effect of light intensity on the ozone formation and the aerosol number concentration during the photochemical reactions of ambient air was investigated in an indoor smog chamber. The smog chamber consists of a housing, 64 blacklights, and a $2.5-m^3$ reaction bag made of Teflon film. The bag was filled with the unfiltered ambient air in Seoul from January 10 to March 18, 2002. In this work, the photolysis rate of $NO_2$, $k_1$ was used as an index of light intensity. Three levels of light intensity were controlled by changing the number of blacklights turned on among 64 blacklights: $0.29min^{-1}$ (50%), $0.44min^{-1}$ (75%), $0.57min^{-1}$ (100%). The ozone concentration increased rapidly within 10 minutes after irradiation irrespective of light intensity, thereafter it increased linearly during the irradiation. The ozone production rate seems to be dependent on both the light intensity and the quality of ambient air introduced into the reaction bag. The change in aerosol number concentration also depended on both the light intensity and the ambient air quality, especially aerosol size distribution. Based on the initial ambient aerosol size distributions, the photochemical potential for aerosol formation and growth is classified into two cases. One is the case showing aerosol formation and growth processes, and the other is the case showing no apparent change in particle size distribution.

  • PDF

Comparison of discharging electrodes for the electrostatic precipitator as an air filtration system in air handling units (에어핸들링 유닛의 공기정화용 전기집진기의 방전극 비교)

  • Shin, Dongho;Woo, Chang Gyu;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo
    • Particle and aerosol research
    • /
    • v.13 no.1
    • /
    • pp.11-16
    • /
    • 2017
  • Indoor air quality is of increasing concern because it is closely related human health. An air handling unit (AHU) can be used to control the indoor air quality related to particulate matters and $CO_2$ as well as air conditioning such as temperature and humidity of indoor air. An electrostatic precipitator has a high collection efficiency and low pressure drop, however, ozone can possibly generate from its chargers, which is one of drawbacks to apply it for indoor air control. Here we compared four charging electrodes such as a $50{\mu}m$ tungsten wire, a $100{\mu}m$ tungsten wire, a $16{\mu}m$-thickness Al foil and a carbon fabric comprised of $5-10{\mu}m$ fibers. The carbon fabric electrode showed a superior particle collection efficiency and a lower ozone generation at a given power consumption compared to tungsten wires of 50, $100{\mu}m$ and an Al foil electrode. This low ozone generating, micro-sized electrode can be applied to the electrostatic precipitator in AHU for indoor air control.

Development of mass aerosol particle generator and fabrication of commercial anti-viral air filter (대용량 입자 발생 장치 개발 및 이를 이용한 항바이러스 공조용 공기필터 제조)

  • Park, Dae Hoon;Joe, Yun Haeng;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.151-159
    • /
    • 2016
  • Since airborne viruses have been known to aggravate indoor air quality, studies on development of anti-viral air filter increase recently. In this study, a mass aerosol particle generator for coating a commercial air filter (over $300{\times}300mm^2$) was built, and evaluated by comparing a commercial particle generator. Then, via this device, a commercial air filter was coated with anti-viral material ($SiO_2-Ag$ nanoparticles in this study), so fabrication of commercial anti-viral air filter was performed and the pressure drop, filtration efficiency, and anti-viral ability of the filter were evaluated against aerosolized bacteriophage MS2 in a continuous air flow condition. The result showed that the particle generation of the new generator was more than about 8.5 times over which of the commercial one. Consequently, $SiO_2-Ag$ particle coating on a filter does not have significant effects on the filtration efficiency and pressure drop with different areas, and the average anti-viral efficiency of the $SiO_2-Ag$ filter was about 92% when the coating areal density was $1.0{\times}10^{12}particles/m^2$.

Pattern Classification of PM -10 in the Indoor Environment Using Disjoint Principal Component Analysis (분산주성분 분석을 이용한 실내환경 중 PM-10 오염의 패턴분류)

  • 남보현;황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.1
    • /
    • pp.25-37
    • /
    • 2002
  • The purpose of the study was to survey the distribution patterns of inorganic elements of PM-10 in the various indoor environments and analyze the pollution patterns of aerosol in various places of indoor environment using a pattern recognition method based on cluster analysis and disjoint principal component analysis. A total of 40 samples in the indoor had been collected using mini-vol portable samplers. These samples were analyzed for their 19 bulk inorganic compounds such as B, Na, Mg, Al, K, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, As, Se, Cd, Ba, Ce, and Pb by using an ICP-MS. By applying a disjoint principal component analysis, four patterns of the indoor air pollutions were distinguished. The first pattern was identified as a group with high concentrations of PM-10, Na, Mg, and Ca. The second pattern was identified as a group with high concentrations B, Mg, At, Ca, Fe, Cu, and Ba. The third pattern was a group of sites with high concentrations of K, Zn. Cd. The fourth pattern was a group with low concentrations PM-10 and all inorganic elements. This methodology was found to be helpful enough to set the criteria standard of indoor air quality, corresponding pollutants, and classification of indoor environment categories when making an indoor air quality law.