• 제목/요약/키워드: Indoor aerosol

검색결과 72건 처리시간 0.025초

열에너지 활용 부유미생물 제어장치 설계 및 실험실 실내공기를 대상으로 한 성능측정에 관한 연구 (A study of a thermal energy equipment for controlling airborne microorganisms in indoor laboratory environments)

  • 김현건;황기병;이준현;이병욱
    • 한국입자에어로졸학회지
    • /
    • 제5권3호
    • /
    • pp.133-138
    • /
    • 2009
  • Airborne microorganisms, termed bioaerosols, are etiological agents of many respiratory and skin diseases. There are high demands of controlling the concentration of bioaerosols, specifically in indoor environments. Here, a new system for controlling indoor bioaerosols is designed and evaluated. An idea of a short time exposure to a thermal energy is used in the design of the equipment. The system was tested in laboratory environments. The experimental results show that the new system can reduce the concentration of viable bioaerosols of indoor laboratory environments.

  • PDF

실내 온도차에 따른 부유세균과의 상관관계 연구 (The Study of Relationship on Bio-Aerosol with Indoor Temperature Difference)

  • 박진영;김삼열;윤정기
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.737-741
    • /
    • 2008
  • The indoor environment has an effect on heath of human in indoor room that they live largely. We will know Bio-Aerosol that causes illness, such as a flu, an asthma and an atopy etc. and see a relationship between Bio-Aerosol and temperature as an experiment in Air-Conditioned room. In the future, this data can use a basic data for an effect of Bio-Aerosol on indoor environment.

  • PDF

환기가 불량한 실내공간에서, 담배연기에 의한 CO, $CO_2$, TVOC 및 에어로졸의 변화 (Changes of CO, $CO_2$, TVOC and Aerosol of Tobacco Smoke in a Poorly-Ventilated Indoor)

  • 한돈희;박수진;류지혜
    • 한국환경보건학회지
    • /
    • 제32권2호
    • /
    • pp.132-139
    • /
    • 2006
  • Number of aerosol, CO, $CO_2$ and TVOC after one-, two-, three-cigarettes smoking were monitored with time every 10 minute for 180 minutes in the seminar room (volume $51.1m^3$) when poorly-ventilated. IAQ monitor (IAQRAE, model PGM-5210) and PortCount (TSI, model 8020) were used for monitoring. Aerosol was decreased with exponential decay equation and it was estimated that number of aerosol would be long suspended (one cigarette 75/cc. two cigarettes 66/cc, three cigarettes 141/cc by 8hrs after smoking). While CO was also decreased with exponential or linear decay equation and correlated with number of aerosol strongly, TVOC and $CO_2$ were increased with linear equation in accordance with time lag. Most of TVOC and $CO_2$ were above standard levels of Korean Indoor Air Quality (Ministry of Environment) without regarding number of cigarettes. When naturally ventilated, all of CO, $CO_2$ and TVOC concentrations were dramatically decreased below standard levels of Korean Indoor Air Quality.

대학건물 실내 에어로졸입자의 입경별 질량농도 특성 (Characteristics of Size-segregated Mass Concentrations of Indoor Aerosol Particles in University Buildings)

  • 서정민;왕빈;장성호;박정호;최금찬
    • 한국산업보건학회지
    • /
    • 제24권4호
    • /
    • pp.453-461
    • /
    • 2014
  • Objective: Based on the fact that fine particles are more likely to produce negative influences on the health of occupants as well as the quality of indoor air compared to coarse particles, it is critical to determine concentrations of aerosol particles with different sizes. Thus, this study focused on the size distribution and concentrations of aerosol particles in university buildings. Method: Aerosol particles in indoor air were collected from four areas: corridors in buildings(In-CO), lecture rooms(In-RO), laboratories(In-LR), and a cafeteria(In-RE). Samples were also collected from outside for comparison between the concentrations of indoor and outdoor particles. For the collection of the samples, an eight stage non-viable cascade impactor was used. Result: The average concentration of $PM_{10}$ in the samples collected from indoor areas was $34.65-91.08{\mu}g/m^3$,and the average for $PM_{2.5}$ was $22.65-60.40{\mu}g/m^3$. The concentrations of the aerosol particles in the corridors, lecture rooms, and laboratories were relatively higher than the concentrations collected from other areas. Furthermore, in terms of mass median aerodynamic diameter(MMAD), the corridors and lecture rooms had higher numbers due to their characteristics, showing $2.36{\mu}m$ and $2.11{\mu}m$, respectively. Laboratories running an electrolysis experiment showed $1.58{\mu}m$, and the cafeteria with regular maintenance and ventilation had $1.96{\mu}m$. Conclusion: The results showed that the $PM_{10}$ concentrations of all samples did not exceed indoor air quality standards. However, the $PM_{2.5}$ concentration was over the standard and, in particular, the concentration of fine particles collected from the laboratories was relatively higher, which could be an issue for the occupants. Therefore, it is important to improve the quality of the indoor air in university buildings.

Evaluation of a Fungal Spore Transportation in a Building under Uncertainty

  • Moon, Hyeun Jun
    • Architectural research
    • /
    • 제8권1호
    • /
    • pp.37-45
    • /
    • 2006
  • A fungal spore transportation model that accounts for the concentration of airborne indoor spores and the amount of spores deposited on interior surfaces has been developed by extending the current aerosol model. This model is intended to be used for a building with a mechanical ventilation system, and considers HVAC filter efficiency and ventilation rate. The model also includes a surface-cleaning efficiency and frequency that removes a portion of spores deposited on surfaces. The developed model predicts indoor fungal spore concentration and provides an indoor/outdoor ratio that may increase or decrease mold growth risks in real, in-use building cases. To get a more useful outcome from the model simulation, an uncertainty analysis has been conducted in a real building case. By including uncertainties associated with the parameters in the spore transportation model, the simulation results provide probable ranges of indoor concentration and indoor/outdoor ratio. This paper describes the uncertainty quantification of each parameter that is specific to fungal spores, and uncertainty propagation using an appropriate statistical technique. The outcome of the uncertainty analysis showed an agreement with the results from the field measurement with air sampling in a real building.

유전 알고리즘을 이용한 어린이 시설의 실내 공기질 분석 (Indoor air quality analysis based on genetic algorithm for childhood facilities)

  • 박서연;우창규
    • 한국입자에어로졸학회지
    • /
    • 제20권1호
    • /
    • pp.1-11
    • /
    • 2024
  • Children are vulnerable to bad indoor air quality, and many researches on indoor air quality have been done with various methodologies. Herein, we used the genetic algorithm, one of the optimization methods, for the analysis based on better estimation values that are not easy to measure. A children playroom and a Taekwondo gym were chosen for the different degree of physical activity. After estimation of the number of occupants, the generation degree of CO2 and PM2.5 were determined from the data of the indoor air quality monitors. Relative errors were below 1% for all cases. Due to many air-treating electronics, the PM2.5 in the children playroom was well-managed compared to that in the Taekwondo gym. The PM2.5-generating activities were calculated and that of the Taekwondo gym was higher than that of the children playroom. The PM2.5 generating values were on the positive relationship with CO2 generating values. This means that we can obtain meaningful information from limited measurement data. For the numerous children facilities, indoor air quality can be easily analyzed and this might contribute to enhancing the children health.

스모그 챔버에서 수분 반응에 의한 대기 에어로졸의 생성 및 성장 (Formation and Growth of Atmospheric Aerosols by Water Vapor Reactions in an Indoor Smog Chamber)

  • 김민철;배귀남;문길주;박주연
    • 한국대기환경학회지
    • /
    • 제20권2호
    • /
    • pp.161-174
    • /
    • 2004
  • Aerosol formation and growth by water vapor reactions were investigated in a 2.5 -㎥ indoor smog chamber filled with the unfiltered ambient air. The relative humidity of test ambient air was elevated at 59~64% or 84~88% by adding water vapor. The aerosol number size distribution and the concentrations of $O_3$, NO, NO$_2$, and SO$_2$ were measured during the experiments. The $O_3$ and NO$_2$ gases were well reacted with the water vapor at high relative humidity of 84~88%, and the reaction rates of these gases seemed to be decreased at low relative humidity of 59~64%. The formation and condensational growth phenomena of ambient aerosols by water vapor reactions were observed in a Teflon bag, depending strongly on the initial particle size distribution. The water vapor reactions might be affected by the contents of oxidants produced by photochemical reactions under sunlight.

진동 방식을 이용한 곰팡이 공기 부유화 장치의 설계 및 성능 평가 (Design and Performance Test of Fungal Aerosol Generator using Vibration Method)

  • 안지혜;이상구;박철우;황정호
    • 한국입자에어로졸학회지
    • /
    • 제8권4호
    • /
    • pp.143-150
    • /
    • 2012
  • Fungal particles have been known to aggravate indoor air quality. To develop fungal particle cleaning devices requires a well-controlled generator of fungal aerosol particles. In this study, a novel fungal aerosol generator was designed and tested for anti-fungal experiment. Cladosporium cladosporioides was selected as test fungal particle. After aerosolization, the number concentration and the size of particles were measured by aerodynamic particle sizer. The number concentration depended on the vibration strength and vibration period of the designed fungal aerosol generator. For the vibration strength of 10volt and the period of 10 sec (5 sec on and 5 sec off), the stable particle generation with concentration of 10#/cm3 was maintained during 35 minutes.

광산란 측정장치에 따른 대중교통차량 미세먼지 측정 특성 (Characteristics of PM10 Measured by Different Light-Scattering Instruments in Public Transport Vehicles)

  • 권순박;정우태;박덕신
    • 한국입자에어로졸학회지
    • /
    • 제11권1호
    • /
    • pp.1-8
    • /
    • 2015
  • In this study, indoor $PM_{10}$ concentration was measured by different type of real-time instruments in public transport vehicles. Light-scattering method is widely used in measuring the size of particulate matters and there is two types of light-scattering methods; one is the nephelometer type which measures the light-scattering degree by aerosol cloud, the other is the spectrometer type which measures light-scattering degree by individual particle. We observed the variation of $PM_{10}$ in KTX, subway and express bus carriages by 1-minute resolution and found that there is similar tendency in pattern among 4 light-scattering devices but difference in absolute concentrations. By comparing gravimetric result in a subway cabin, the spectrometer type device, C, was chosen as a reference device. The conversion factors of nephelometer device A-1, A-2, and B were 1.666, 1.463 and 2.125 respectively.

탄소섬유 시트 방전극의 입자 크기 별 집진 특성 및 공기청정기로의 응용 (Particle collection characteristics of carbon fiber sheet discharge electrode by particle size and application to air cleaner)

  • 신동호;우창규;홍기정;김학준;김용진;한방우
    • 한국입자에어로졸학회지
    • /
    • 제14권3호
    • /
    • pp.81-88
    • /
    • 2018
  • The market for improving the indoor air quality is continuously increasing, and air cleaners are the representative products. As interest in indoor air quality increases, so are the ultrafine particle which are harmful to the human body. Despite its many advantages, electrostatic precipitators are less used in indoor air due to ozone production. In this study, the carbon fiber sheet was applied to the discharge electrode and compared with the conventional tungsten wire discharge electrode. The particle collection efficiency and the amount of ozone generation were measured for 10-100 nm particles. Furthermore, it was applied to commercial air purifier with electrostatic precipitator to compare particle removal performance. The carbon fiber sheet type discharge electrode generates a small amount of ozone, and thus it can be applied to improve indoor air quality.