• Title/Summary/Keyword: Indoor Position Tracking

Search Result 60, Processing Time 0.032 seconds

Global Map Building and Navigation of Mobile Robot Based on Ultrasonic Sensor Data Fusion

  • Kang, Shin-Chul;Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.198-204
    • /
    • 2007
  • In mobile robotics, ultrasonic sensors became standard devices for collision avoiding. Moreover, their applicability for map building and navigation has exploited in recent years. In this paper, as the preliminary step for developing a multi-purpose autonomous carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as ultrasonic sensor, IR sensor for mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within both indoor and outdoor environments. The global map building based on multi-sensor data fusion is applied for recognition an obstacle free path from a starting position to a known goal region, and simultaneously build a map of straight line segment geometric primitives based on the application of the Hough transform from the actual and noisy sonar data. We will give an explanation for the robot system architecture designed and implemented in this study and a short review of existing techniques, Hough transform, since there exist several recent thorough books and review paper on this paper. Experimental results with a real Pioneer DX2 mobile robot will demonstrate the effectiveness of the discussed methods.

Color Landmark Based Self-Localization for Indoor Mobile Robots (이동 로봇을 위한 컬러 표식 기반 자기 위치 추정 기법)

  • Yoon, Kuk-Jin;Jang, Gi-Jeong;Kim, Sung-Ho;Kweon, In-So
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.749-757
    • /
    • 2001
  • We present a simple artificial landmark model and robust landmark tracking algorithm for mobile robot localization. The landmark model, consisting of symmetric and repetitive color patches, produces color histograms that are invariant under the geometric and photometric distortions. A stochastic approach based on the CONDENSATION tracks the landmark model robustly even under the varying illumination conditions. After the landmark detection, relative position of the mobile robot to the landmark is calculated. Experimental results show that the proposed landmark model is effective and can be detected and tracked in a clustered scene robustly. With the tracked single landmark, we extract geometrical information than achieve accurate localization.

  • PDF

A Study on Indoor Position-Tracking System Using RSSI Characteristics of Beacon (비콘의 RSSI 특성을 이용한 실내 위치 추적 시스템에 관한 연구)

  • Kim, Ji-seong;Kim, Yong-kab;Hoang, Geun-chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.85-90
    • /
    • 2017
  • Indoor location-based services have been developed based on the Internet of Things technologies which measure and analyze users who are moving in their daily lives. These various indoor positioning technologies require separate hardware and have several disadvantages, such as a communication protocol which becomes complicated. Based on the fact that a reduction in signal strength occurs according to the distance due to the physical characteristics of the transmitted signal, RSSI technology that uses the received signal strength of the wireless signal used in this paper measures the strength of the transmitted signal and the intensity of the attenuated received signal and then calculates the distance between a transmitter and a receiver, which requires no separate costs and makes to implement simple measurements. It was applied calculating the value for the average RSSI and the RSSI filtering feedback. Filtering is used to reduce the error of the RSSI values that are measured at long distance.It was confirmed that the RSSI values through the average filtering and the RSSI values measured by setting the coefficient value of the feedback filtering to 0.5 were ranged from -61 dBm to - 52.5 dBm, which shows irregular and high values decrease slightly as much as about -2 dBm to -6 dBm as compared to general measurements.

A Moving Path Control of an Automatic Guided Vehicle Using Relative Distance Fingerprinting (상대거리 지문 정보를 이용한 무인이송차량의 주행 경로 제어)

  • Hong, Youn Sik;Kim, Da Jung;Hong, Sang Hyun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.10
    • /
    • pp.427-436
    • /
    • 2013
  • In this paper, a method of moving path control of an automatic guided vehicle in an indoor environment through recognition of marker images using vision sensors is presented. The existing AGV moving control system using infrared-ray sensors and landmarks have faced at two critical problems. Since there are many windows in a crematorium, they are going to let in too much sunlight in the main hall which is the moving area of AGVs. Sunlight affects the correct recognition of landmarks due to refraction and/or reflection of sunlight. The second one is that a crematorium has a narrow indoor environment compared to typical industrial fields. Particularly when an AVG changes its direction to enter the designated furnace the information provided by guided sensors cannot be utilized to estimate its location because the rotating space is too narrow to get them. To resolve the occurrences of such circumstances that cannot access sensing data in a WSN environment, a relative distance from marker to an AGV will be used as fingerprinting used for location estimation. Compared to the existing fingerprinting method which uses RSS, our proposed method may result in a higher reliable estimation of location. Our experimental results show that the proposed method proves the correctness and applicability. In addition, our proposed approach will be applied to the AGV system in the crematorium so that it can transport a dead body safely from the loading place to its rightful destination.

A Study on Implementation of Ubiquitous Home Mess-Cleanup Robot (유비쿼터스 홈 메스클린업 로봇의 구현에 관한 연구)

  • Cha Hyun-Koo;Kim Seung-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1011-1019
    • /
    • 2005
  • In this paper, Ubiquitous Home Mess-Cleanup Robot(UHMR), which has a practical function of the automatic mess-cleanup, is developed. The vacuum-cleaner had made the burden of house chore lighten but the operation labour of a vacuum-cleaner had been so severe. Recently, the cleaning robot was producted to perfectly solve the cleaning labour of a house but it also was not successful because it still had a problem of mess-cleaning, which was the clean-up of big trash and the arrangement of newspapers, clothes, etc. The cleaning robot is to just vacuum dust and small trash but has no function to arrange and take away before the automatic vacuum-cleaning. For this reason, the market for the cleaning robot is not yet built up. So, we need a design method and technological algorithm of new automatic machine to solve the problem of mess-cleanup in house. It needs functions of agile automatic navigation, novel manipulation system for mess-cleanup. The automatic navigation system has to be controlled for the full scanning of living room, to recognize the absolute position and orientation of tile self, the precise tracking of the desired path, and to distinguish the mess object to clean-up from obstacle object to just avoid. The manipulate,, which is not needed in the vacuum-cleaning robot, must have the functions, how to distinguish big trash to clean from mess objects to arrange, how to grasp in according to the form of mess objects, how to move to the destination in according to mess objects and arrange them. We use the RFID system to solve the problems in this paper and propose the reading algorithm of RFID tags installed in indoor objects and environments. Then, it should be an intelligent system so that the mess cleaning task can be autonomously performed in a wide variety of situations and environments. It needs to also has the entertainment functions for the good communication between the human and UHMR. Finally, the good performance of the designed UHMR is confirmed through the results of the mess clean-up and arrangement.

A Development of Home Mess-Cleanup Robot

  • Cha, Hyun-Koo;Jang, Kyung-Jun;Im, Chan-Young;Kim, Seung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1612-1616
    • /
    • 2005
  • In this paper, a Home Mess-Cleanup Robot(HMR), which has a practical function of the automatic mess-cleanup, is developed. The vacuum-cleaner had made the burden of house chore lighten but the operation labour of a vacuum-cleaner had been so severe. Recently, the cleaning robot was producted to perfectly solve the cleaning labour of a house but it also was not successful because it still had a problem of mess-cleaning, which was the clean-up of big trash and the arrangement of newspapers, clothes, etc. The cleaning robot is to just vacuum dust and small trash but has no function to arrange and take away before the automatic vacuum-cleaning. For this reason, the market for the cleaning robot is not yet built up. So, we need a design method and technological algorithm of new automatic machine to solve the problem of mess-cleanup in house. It needs functions of agile automatic navigation, novel manipulation system for mess-cleanup. The automatic navigation system has to be controlled for the full scanning of living room, to recognize the absolute position and orientation of the self, the precise tracking of the desired path, and to distinguish the mess object to clean-up from obstacle object to just avoid. The manipulator, which is not needed in the vacuum-cleaning robot, must have the functions, how to distinguish big trash to clean from mess objects to arrange, how to grasp in according to the form of mess objects, how to move to the destination in according to mess objects and arrange them. We use the RFID system to solve the problems in this paper and propose the reading algorithm of RFID tags installed in indoor objects and environments. Then, it should be an intelligent system so that the mess cleaning task can be autonomously performed in a wide variety of situations and environments. It needs to also has the entertainment functions for the good communication between the human and HMR. Finally, the good performance of the designed HMR is confirmed through the results of the mess clean-up and arrangement.

  • PDF

People Tracking and Accompanying Algorithm for Mobile Robot Using Kinect Sensor and Extended Kalman Filter (키넥트센서와 확장칼만필터를 이용한 이동로봇의 사람추적 및 사람과의 동반주행)

  • Park, Kyoung Jae;Won, Mooncheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.345-354
    • /
    • 2014
  • In this paper, we propose a real-time algorithm for estimating the relative position and velocity of a person with respect to a robot using a Kinect sensor and an extended Kalman filter (EKF). Additionally, we propose an algorithm for controlling the robot in the proximity of a person in a variety of modes. The algorithm detects the head and shoulder regions of the person using a histogram of oriented gradients (HOG) and a support vector machine (SVM). The EKF algorithm estimates the relative positions and velocities of the person with respect to the robot using data acquired by a Kinect sensor. We tested the various modes of proximity movement for a human in indoor situations. The accuracy of the algorithm was verified using a motion capture system.

A Study on the Technology Development of User-based Home Automation Service (사용자 위치기반 홈오토메이션 서비스 기술 개발에 관한 연구)

  • Lee, Jung-Gi;Lee, Yeong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.327-332
    • /
    • 2017
  • As Internet of Things (IoT) technology advances, there is a growing demand for location-based services (LBSs) to identify users' mobility and identity. The initial LBS system was mainly used to measure position information by measuring the phase of a signal transmitted from a global positioning system (GPS) satellite or by measuring distance to a satellite by tracking the code of a carrier signal. However, the use of GPS satellites is ineffective, because it is difficult to receive satellite signals indoors. Therefore, research on wireless communications systems like ultra-wide band (UWB), radio frequency identification (RFID), and ZigBee are being actively pursued for location recognition technology that can be utilized in an indoor environment. In this paper, we propose an LBS system that includes the 2.45GHz band for chirp spread spectrum (CSS), and the 3.1-10.6GHz band and the 250-750MHz bands for UWB using the IEEE 802.15.4a standard for low power-based location recognition. As a result, we confirmed that the 2.45GHz Industrial, Scientific and Medical (ISM) band RF transceiver and the ranging function can be realized in the hardware and has 0dBm output power.

A Moving Control of an Automatic Guided Vehicle Based on the Recognition of Double Landmarks (이중 랜드마크 인식 기반 AGV 이동 제어)

  • Jeon, Hye-Gyeong;Hong, Youn-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.721-730
    • /
    • 2012
  • In this paper the problem of a moving control of an automatic guided vehicle(AGV) which transports a dead body to a designated cinerator safely in a crematorium, an special indoor environment, will be discussed. Since a method of burying guided lines in the floor is not proper to such an environment, a method of moving control of an AGV based on infrared ray sensors is now proposed. With this approach, the AGV emits infrared ray to the landmarks adheres to the ceiling to find a moving direction and then moves that direction by recognizing them. One of the typical problems for this method is that dead zone and/or overlapping zone may exist when the landmarks are deployed. To resolve this problem, an algorithm of recognizing double landmarks at each time is applied to minimize occurrences of sensing error. In addition, at the turning area to entering the designated cinerator, to fit an AGV with the entrance of the designated cinerator, an algorithm of controlling the velocity of both the inner and outer wheel of it. The functional correctness of our proposed algorithm has been verified by using a prototype vehicle. Our real AGV system has been applied to a crematorium and it moves automatically within an allowable range of location error.

Design of a Crowd-Sourced Fingerprint Mapping and Localization System (군중-제공 신호지도 작성 및 위치 추적 시스템의 설계)

  • Choi, Eun-Mi;Kim, In-Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.9
    • /
    • pp.595-602
    • /
    • 2013
  • WiFi fingerprinting is well known as an effective localization technique used for indoor environments. However, this technique requires a large amount of pre-built fingerprint maps over the entire space. Moreover, due to environmental changes, these maps have to be newly built or updated periodically by experts. As a way to avoid this problem, crowd-sourced fingerprint mapping attracts many interests from researchers. This approach supports many volunteer users to share their WiFi fingerprints collected at a specific environment. Therefore, crowd-sourced fingerprinting can automatically update fingerprint maps up-to-date. In most previous systems, however, individual users were asked to enter their positions manually to build their local fingerprint maps. Moreover, the systems do not have any principled mechanism to keep fingerprint maps clean by detecting and filtering out erroneous fingerprints collected from multiple users. In this paper, we present the design of a crowd-sourced fingerprint mapping and localization(CMAL) system. The proposed system can not only automatically build and/or update WiFi fingerprint maps from fingerprint collections provided by multiple smartphone users, but also simultaneously track their positions using the up-to-date maps. The CMAL system consists of multiple clients to work on individual smartphones to collect fingerprints and a central server to maintain a database of fingerprint maps. Each client contains a particle filter-based WiFi SLAM engine, tracking the smartphone user's position and building each local fingerprint map. The server of our system adopts a Gaussian interpolation-based error filtering algorithm to maintain the integrity of fingerprint maps. Through various experiments, we show the high performance of our system.