• Title/Summary/Keyword: Indoor Position

Search Result 529, Processing Time 0.024 seconds

High-precision positioning system using a database of the environment, position correction algorithm (정밀도가 높은 위치 측정 시스템의 환경 데이터베이스를 이용한 위치 보정 알고리즘)

  • Lee, Jeong-Joo;Kang, Dong-Jo;Park, Hyun-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1779-1788
    • /
    • 2012
  • Recently, demands of application services in consideration of interior environment according to the stream of times, Ubiquitous. In case of interior location-based service, WLAN is now mostly used. But it is largely affected by environmental changes. To solve this problem, lots of studies on UWB are underway. The reason why studies on UWB are much made lies in that it is not much affected by environment changes owing to radio wave characteristics. So this study suggests the location correction algorithm which derives values with less influence of environment and high accuracy and corrects with more accurate location information using Ubisense system based on UWB technologies. The location correction algorithm suggested is one made after constructing environment database and use it to estimate more accurate location from the location measuring system in a high position.

Analysis of Error Propagation in Two-way-ranging-based Cooperative Positioning System (TWR 기반 군집 협업측위 시스템의 오차 전파 분석)

  • Lim, Jeong-Min;Lee, Chang-Eun;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.898-902
    • /
    • 2015
  • Alternative radio-navigation technologies aim at providing continuous navigation solution even if one cannot use GNSS (Global Navigation Satellite System). In shadowing region such as indoor environment, GNSS signal is no longer available and the alternative navigation system should be used together with GNSS to provide seamless positioning. For soldiers in battlefield where GNSS signal is jammed or in street battle, the alternative navigation system should work without positioning infrastructure. Moreover, the radio-navigation system should have scalability as well as high accuracy performance. This paper presents a TWR (Two-Way-Ranging)-based cooperative positioning system (CPS) that does not require location infrastructure. It is assumed that some members of CPS can obtain GNSS-based position and they are called mobile anchors. Other members unable to receive GNSS signal compute their position using TWR measurements with mobile anchors and neighboring members. Error propagation in CPS is analytically studied in this paper. Error budget for TWR measurements is modeled first. Next, location error propagation in CPS is derived in terms of range errors. To represent the location error propagation in the CPS, Location Error Propagation Indicator (LEPI) is proposed in this paper. Simulation results show that location error of tags in CPS is mainly influenced by the number of hops from anchors to the tag to be positioned as well as the network geometry of CPS.

Performance Improvement of a Pedestrian Dead Reckoning System using a Low Cost IMU (저가형 관성센서를 이용한 보행자 관성항법 시스템의 성능 향상)

  • Kim, Yun-Ki;Park, Jae-Hyun;Kwak, Hwy-Kuen;Park, Sang-Hoon;Lee, ChoonWoo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.569-575
    • /
    • 2013
  • This paper proposes a method for PDR (Pedestrian Dead-Reckoning) using a low cost IMU. Generally, GPS has been widely used for localization of pedestrians. However, GPS is disabled in the indoor environment such as in buildings. To solve this problem, this research suggests the PDR scheme with an IMU attached to the pedestrian's waist. However, despite the fact many methods have been proposed to estimate the pedestrian's position, but their results are not sufficient. One of the most important factors to improve performance is, a new calibration method that has been proposed to obtain the reliable sensor data. In addition to this calibration, the PDR method is also proposed to detect steps, where estimation schemes of step length, attitude, and heading angles are developed. Peak and zero crossings are detected to count the steps from 3-axis acceleration values. For the estimation of step length, a nonlinear step model is adopted to take advantage of using one parameter. Complementary filter and zero angular velocity are utilized to estimate the attitude of the IMU module and to minimize the heading angle drift. To verify the effectiveness of this scheme, a real-time system is implemented and demonstrated. Experimental results show an accuracy of below 1% and below 3% in distance and position errors, respectively, which can be achievable using a high cost IMU.

Performance Simulation of Various Feature-Initialization Algorithms for Forward-Viewing Mono-Camera-Based SLAM (전방 모노카메라 기반 SLAM 을 위한 다양한 특징점 초기화 알고리즘의 성능 시뮬레이션)

  • Lee, Hun;Kim, Chul Hong;Lee, Tae-Jae;Cho, Dong-Il Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.833-838
    • /
    • 2016
  • This paper presents a performance evaluation of various feature-initialization algorithms for forward-viewing mono-camera based simultaneous localization and mapping (SLAM), specifically in indoor environments. For mono-camera based SLAM, the position of feature points cannot be known from a single view; therefore, it should be estimated from a feature initialization method using multiple viewpoint measurements. The accuracy of the feature initialization method directly affects the accuracy of the SLAM system. In this study, four different feature initialization algorithms are evaluated in simulations, including linear triangulation; depth parameterized, linear triangulation; weighted nearest point triangulation; and particle filter based depth estimation algorithms. In the simulation, the virtual feature positions are estimated when the virtual robot, containing a virtual forward-viewing mono-camera, moves forward. The results show that the linear triangulation method provides the best results in terms of feature-position estimation accuracy and computational speed.

Absolute Altitude Determination for 3-D Indoor and Outdoor Positioning Using Reference Station (기준국을 이용한 실내·외 절대 고도 산출 및 3D 항법)

  • Choi, Jong-Joon;Choi, Hyun-Young;Do, Seoung-Bok;Kim, Hyun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.165-170
    • /
    • 2015
  • The topic of this paper is the advanced absolute altitude determination for 3-D positioning using barometric altimeter and the reference station. Barometric altimeter does not provide absolute altitude because atmosphere pressure always varies over the time and geographical location. Also, since Global Navigation Satellites system such as GPS, GLONASS has geometric error, the altitude information is not available. It is the reason why we suggested the new method to improve the altitude accuracy. This paper shows 3-D positioning algorithm using absolute altitude determination method and evaluates the algorithm by real field tests. We used an accurate altitude from RTK system in Seoul as a reference data and acquired the differential value of pressure data between a reference station and a mobile station equipped in low cost barometric altimeter. In addition, the performance and advantage of the proposed method was evaluated by 3-D experiment analysis of PNS and CNS. We expect that the proposed method can expand 2-D positioning system 3-D position determination system simply and this 3-D position determination technique can be very useful for the workers in the field of fire-fighting and construction.

A Study on Augmented Reality-based Positioning Service Using Machine Learning (머신 러닝을 이용한 증강현실 기반 측위 서비스에 관한 연구)

  • Yoon, Chang-Pyo;Lee, Hae-Jun;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.313-315
    • /
    • 2017
  • Recently, application fields using machine learning have been widely expanded. In addition to the spread of smart devices, application services using location-based services are also in demand. However, it is difficult to provide the application service through the positioning in the indoor environment such as the specific space where the disaster situation where the information for positioning can not be collected and the actual location location information can not be used. In this situation, using the spatial information composed of the marker information and the markers of the neighbor registered in the augmented reality environment, positioning at a specific situation or position becomes possible. At this time, it is possible to learn the operation that makes the configuration of the marker-based spatial information correspond to the actual position through the machine learning, and the optimal positioning result can be obtained by minimizing the error. In this paper, we study the positioning methods required in specific situations using machine learning for learning of augmented reality markers and spatial information.

  • PDF

Development of small multi-copter system for indoor collision avoidance flight (실내 비행용 소형 충돌회피 멀티콥터 시스템 개발)

  • Moon, Jung-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.102-110
    • /
    • 2021
  • Recently, multi-copters equipped with various collision avoidance sensors have been introduced to improve flight stability. LiDAR is used to recognize a three-dimensional position. Multiple cameras and real-time SLAM technology are also used to calculate the relative position to obstacles. A three-dimensional depth sensor with a small process and camera is also used. In this study, a small collision-avoidance multi-copter system capable of in-door flight was developed as a platform for the development of collision avoidance software technology. The multi-copter system was equipped with LiDAR, 3D depth sensor, and small image processing board. Object recognition and collision avoidance functions based on the YOLO algorithm were verified through flight tests. This paper deals with recent trends in drone collision avoidance technology, system design/manufacturing process, and flight test results.

Positioning-error Analysis of Vibration Sensors for Prognostics and Health Management in Rotating System (갠트리 크레인 호이스트의 건전성 평가를 위한 진동 모사시스템 구축과 데이터 통계 분석)

  • Jang, Jaewon;Han, Zhiqiang;Zhang, Haiyang;Oh, Daekyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.346-353
    • /
    • 2022
  • Recently, studies on the integrity of rotating machines, such as gantry cranes, which are used in the shipbuilding industry, have been actively conducted. Gantry cranes are driven at relatively low revolutions per minute (RPM), are frequently operated and stopped, and are impacted by external environmental factors, such as shock and noise in the measurement data. The purpose of this study was to construct a replica of a gantry crane hoist used in indoor shipbuilding and analyze the acquired data for errors caused by the shift in operating conditions (RPM) and the change in the position of the data acquisition sensor. Consequently, we observed that the error caused by differences in sensor positions did not occur significantly under low operating conditions but occurred significantly under relatively high operating conditions. Thus, we determined that both the operating condition and position of the acquisition sensor affected the data acquired by the rotary machine.

Development of a ROS-Based Autonomous Driving Robot for Underground Mines and Its Waypoint Navigation Experiments (ROS 기반의 지하광산용 자율주행 로봇 개발과 경유지 주행 실험)

  • Kim, Heonmoo;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.231-242
    • /
    • 2022
  • In this study, we developed a robot operating system (ROS)-based autonomous driving robot that estimates the robot's position in underground mines and drives and returns through multiple waypoints. Autonomous driving robots utilize SLAM (Simultaneous Localization And Mapping) technology to generate global maps of driving routes in advance. Thereafter, the shape of the wall measured through the LiDAR sensor and the global map are matched, and the data are fused through the AMCL (Adaptive Monte Carlo Localization) technique to correct the robot's position. In addition, it recognizes and avoids obstacles ahead through the LiDAR sensor. Using the developed autonomous driving robot, experiments were conducted on indoor experimental sites that simulated the underground mine site. As a result, it was confirmed that the autonomous driving robot sequentially drives through the multiple waypoints, avoids obstacles, and returns stably.

Studies on the Breeding of Cold Hardiness and Technique of Overwintering Cultivation in Citrus (감귤(柑橘)의 내한성(耐寒性) 품종육성(品種育成) 및 내한(耐寒) 재배기술(栽培技術)에 관(關)한 연구(硏究))

  • Kim, Chi-moon;Song, Ho-kyung;Kim, Chung-suk
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.126-140
    • /
    • 1977
  • Present studies were carried out for breeding cold resistant clones of Citrus, improving overwintering techniques of Citrus in Jeju island as well as other southern region, Result obtained were as follows 1. In the vinyl house covered with two sheets of straw mat, 12 indivuals were found as non-injury and 15 were slightly injured by leaf freeging test at $-9^{\circ}C$ for 2 hours treatment. 2. In the condition of vinyl house covered with straw mat and viny film mulching and heat-in by sun-light, the inside temperature of vinyl house were not lowered below $-3^{\circ}C$ and the ground temperatura in vinyl house keeps above $0^{\circ}C$ during winter though outdoor temperature were lower by $-15^{\circ}C$(Daejeon area). 3. The vinyl tunnel inside the vinyl house and vinyl film mulching on ground position showed greater effectiveness for preventing heat loss from house but there were no significant difference between the color of vinyl film covered the tunnel. 4. In the vertical distribution of maximum temperature in vinyl house, the upper space was slightly higher than the lower position at high temperature condition, while minimum temperature was distributed as higher as the middle position, ground surface and upper position in order at low temperature condition 5. In the horizontal distribution of temperature in vinyl house, ground and surface-temperature of north side was lower than the other sides, and citrus planted within 30cm from north side wall died by cold injury and in the other side near wall appeared slight symptom of cold injury. 6. The insulating trench ($30{\times}30{\times}30cm$) packed with straw bundle installed under north wall might be effective to prevent heat loss of ground temperature. 7. In cloudy and snowy day, the temperature difference between indoor and outdoor were less, and the indoor temperature were maintained highly during night due to the effect of prevention of heat loss. 8. The highest temperature in a day was observed at about P.M. 3 both inside and outside of vinyl house and the lowest temperature was observed at about A.M. 6. The difference between the highest and lowest temperature of indoor in a sunny day was $19^{\circ}C$, compared with $9^{\circ}C$ on a cloudy or snowy day in late November. Especially, lowering of temperature in a snowy day was so less that the curve of temperature change was comparatively constant, 9. If the effective methods of citrus cultivation in vinyl house with improved clone such as hardiness. semi-dwarf and spur type are applied, it might be possible to cultivate the citrus tree safely in Jeju island as well as other southern rejion and to magnity the cultivation of citrus tree.

  • PDF