• Title/Summary/Keyword: Indoor Position

Search Result 523, Processing Time 0.022 seconds

A Study on Positioning Error according to Signal Sampling Rate in TDOA Positioning System (TDOA 위치 추정 시스템에서의 신호 샘플링 속도에 따른 위치 오차에 관한 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.191-196
    • /
    • 2016
  • A development on the indoor positioning technologies and services has been proceeded very actively. Among the several positioning technologies, the TDOA(Time Difference of Arrival) technology using acoustic signal has the best positioning performance. Because so many people use their own smartphones, the location of the smartphone is important, and the TDOA technology should be employed to use the acoustic signal for the positioning. For the digital signal processing with the acoustic signal, the signal should be sampled, and as the sampling rate increases, the positioning accuracy could be improved instead of processing time burden. In this paper, the position estimation error according to the sampling rate is analyzed, and the appropriate sampling rate for the positioning system is proposed.

Measurement of Target Objects Based on Recognition of Curvature and Plane Surfaces using a Single Slit Beam Projection (슬릿광 투영법을 이용한 곡면과 평면의 식별에 의한 대상물체의 계측)

  • Choi, Yong-Woon;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.568-576
    • /
    • 1999
  • Using a laser sheet beam projector combined with a CCD-Camera, an efficient technique to recognize complex surface of curvature and lane has been demonstrated for the purpose of mobile robot navigation. In general, obstacles of indoor environments in the field of SLIT-RAY plane are captured as segments of an elliptical arc and a line in the camera image. The robot has been capable of moving along around the obstacle in front of it, by recognizing the original shape of each segment with the differential coefficient by means of least squares method. In this technique, the imaged pixels of each segment, particularly elliptical arc, have been converted into a corresponding circular arc in the real-world coordinates so as to make more feasible the image processing for the position and radius measurement than conventional way based on direct elliptical are analyses. Advantages over direct elliptical cases include 1) higher measurement accuracy and shorter processing time because the circular arc process can reduce the shape-specifying parameters, 2) no complicated factor such as the tilt of elliptical arc axis in the image plane, which produces the capability to find column position and radiua regardless of the camera location . These are essentially required for a mobile robot application. This technique yields an accuracy less than 2cm for a 28.5cm radius column located in the range of 70-250cm distance from the robot. The accuracy obtained in this study is sufficient enough to navigate a cleaning robot which operates in indoor environments.

  • PDF

A Study on Average Range Setting in Adaptive KNN of WiFi Fingerprint Location Estimation Method (WiFi 핑거프린트 위치추정 방식의 적응형 KNN에서 평균 범위 설정에 관한 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.129-134
    • /
    • 2018
  • Research on the technique for estimating the indoor position has been actively carried out. In particular, the WiFi fingerprint method, which does not require any additional infrastructure, is being partially used because of its high economic efficiency. The KNN method which estimates similar points to the corresponding points by comparing intensity information of the WLAN reception signal measured at various points in advance with intensity information measured at a specific point in the future is simple but has a good performance. However, in the conventional KNN scheme, since the number K of average candidate positions is constant, there is a problem that the position estimation error is not optimized according to a specific point. In this paper, we proposed an algorithm that adaptively changes the K value for each point and applied it to experimental data and evaluated its performance.

Development of a Wall-climbing Welding Robot for Draft Mark on the Curved Surface (선수미 흘수마크 용접을 위한 벽면이동로봇 개발)

  • Lee, Jae-Chang;Kim, Ho-Gu;Kim, Se-Hwan;Ryu, Sin-Wook
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.112-121
    • /
    • 2006
  • The vertical displacement of a ship on the basis of the sea level is an important parameter for its stability and control. To indicate the displacement on operating conditions, "draft marks" are carved on the hull of the ship in various ways. One of the methods is welding. The position, shape and size of the marks are specified on the shipbuilding rules by classification societies to be checked by shipbuilders. In most cases, high-skilled workers do the welding along the drawing for the marks and welding bead becomes the marks. But the inaccuracies due to human errors and high labor cost increase the needs for automating the work process of the draft marks. In the preceding work, an indoor robot was developed for automatic marking system on flat surfaces and the work proved that the robot welding was more effective and accurate than manual welding. However, many parts of the hull structure constructed at the outdoor are cowed shapes, which is beyond the capability of the robot developed for the indoor works on the flat surface. The marking on the curved steel surface requiring the 25m elevations is one of the main challenges to the conventional robots. In the present paper, the robot capable of climbing vertical curved steel surfaces and performing the welding at the marked position by effectively solving the problems mentioned earlier is presented.

  • PDF

Bluetooth Beacon Planing Considering Position Estimation Accuracy in Small and Isolated In-Door Environment (소형독립공간에서 실내측위 정확도를 고려한 블루투스 비컨 위치선정)

  • Ahn, Heejune;Thuy, Tran Vinh;Lee, Ye Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1307-1312
    • /
    • 2015
  • The recent adoption of Bluetooth LE technology in smart phones triggered commercial interest in RSSI-based positioning technology. Estimation error in RSSI measurement due to the antenna pattern, multipath fading, environmental noise has to be considered for designing beacon systems. The paper proposes an analysis method and beacon planning rules for a small and isolated indoor service area, based on probabilistic model of RSSI estimation error. As an practically important guide, the beacons have to be installed at the boundary of the service area to minimize the maximum position error, whereas the beacons have to be evenly distributed in the service space to minimize the average estimation error.

A Position Tracking System Using Pattern Matching and Regression Curve (RFID 태그를 이용한 실내 위치 추적 시스템에 관한 연구)

  • Cho, Jaehyung
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.211-217
    • /
    • 2019
  • Location positioning systems are available in applications such as mobile, robotic tracking systems and Wireless location-based service (LBS) applications. The GPS system is the most well-known location tracking system, but it is not easy to use indoors. The method of radio frequency identification (RFID) location tracking was studied in terms of cost-effectiveness for indoor location tracking systems. Most RFID systems use active RFID tags using expendable batteries, but in this paper, an inexpensive indoor location tracking system using passive RFID tags has been developed. A pattern matching method and a system for tracing location by generating regression curves were studied to use precision tracking algorithms. The system was tested by verifying the level of error caused by noise. The three-dimensional curves are produced by the regression equation estimated the statistically meaningful coordinates by the differential equation. The proposed system could also be applied to mobile robot systems, AGVs and mobile phone LBSs.

Simple Pyramid RAM-Based Neural Network Architecture for Localization of Swarm Robots

  • Nurmaini, Siti;Zarkasi, Ahmad
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.370-388
    • /
    • 2015
  • The localization of multi-agents, such as people, animals, or robots, is a requirement to accomplish several tasks. Especially in the case of multi-robotic applications, localization is the process for determining the positions of robots and targets in an unknown environment. Many sensors like GPS, lasers, and cameras are utilized in the localization process. However, these sensors produce a large amount of computational resources to process complex algorithms, because the process requires environmental mapping. Currently, combination multi-robots or swarm robots and sensor networks, as mobile sensor nodes have been widely available in indoor and outdoor environments. They allow for a type of efficient global localization that demands a relatively low amount of computational resources and for the independence of specific environmental features. However, the inherent instability in the wireless signal does not allow for it to be directly used for very accurate position estimations and making difficulty associated with conducting the localization processes of swarm robotics system. Furthermore, these swarm systems are usually highly decentralized, which makes it hard to synthesize and access global maps, it can be decrease its flexibility. In this paper, a simple pyramid RAM-based Neural Network architecture is proposed to improve the localization process of mobile sensor nodes in indoor environments. Our approach uses the capabilities of learning and generalization to reduce the effect of incorrect information and increases the accuracy of the agent's position. The results show that by using simple pyramid RAM-base Neural Network approach, produces low computational resources, a fast response for processing every changing in environmental situation and mobile sensor nodes have the ability to finish several tasks especially in localization processes in real time.

Indoor positioning system for naval ship personnel using beacon

  • Kim, Jong-Hwa;Kim, Joo-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.135-142
    • /
    • 2019
  • In this paper, we propose a system that can identify the position of naval ship personnel at a glance by utilizing the Bluetooth-based beacons. The system proposed in this paper, installs a beacon receiver which are short-range wireless communication devices for each cabin, and in the installed beacon receiver receives information from beacons held by personnel. The received information is transmitted to the processing server, and the processing server transmits the integrated information of the cabin to the display module. Display module displays personnel information located in each cabin. As a result of simulations using the designed system, it was confirmed that the integrated information is transferred to the display module and displayed. Unlike existing situations where personnel positions are reported orally within the ship, the system can quickly and in real time determine the position of personnel, allowing for the management of personnel in non-combat situations and the rapid battle disposition in combat situations. This is expected to contribute greatly to the improvement of fighting power.

Study of Robust Position Recognition System of a Mobile Robot Using Multiple Cameras and Absolute Space Coordinates (다중 카메라와 절대 공간 좌표를 활용한 이동 로봇의 강인한 실내 위치 인식 시스템 연구)

  • Mo, Se Hyun;Jeon, Young Pil;Park, Jong Ho;Chong, Kil To
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.655-663
    • /
    • 2017
  • With the development of ICT technology, the indoor utilization of robots is increasing. Research on transportation, cleaning, guidance robots, etc., that can be used now or increase the scope of future use will be advanced. To facilitate the use of mobile robots in indoor spaces, the problem of self-location recognition is an important research area to be addressed. If an unexpected collision occurs during the motion of a mobile robot, the position of the mobile robot deviates from the initially planned navigation path. In this case, the mobile robot needs a robust controller that enables the mobile robot to accurately navigate toward the goal. This research tries to address the issues related to self-location of the mobile robot. A robust position recognition system was implemented; the system estimates the position of the mobile robot using a combination of encoder information of the mobile robot and the absolute space coordinate transformation information obtained from external video sources such as a large number of CCTVs installed in the room. Furthermore, vector field histogram method of the pass traveling algorithm of the mobile robot system was applied, and the results of the research were confirmed after conducting experiments.

Method to Derive the Optimal Vent Position when Flammable Liquid Leaks Based on CFD (CFD 기반 인화성 액체 누출 시 최적의 환기구 배치 도출 방안)

  • Eun-Hee Kim;Seung-Hyo An;Jun-Seo Lee;Byung-Chol Ma
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 2024
  • If flammable liquid leaks, vapor evaporated from the pool can cause poisoning or suffocation to workers, leading to secondary accidents such as fires and explosions. To prevent such damage, ventilation facilities shall be installed when designing indoor workplaces. At this time, the behavior varies depending on the characteristics of the leaked chemical, so it is necessary to select a suitable vent location according to the material. Therefore, 3D CFD simulations were introduced to derive optimal vent position and ventilation efficiency was quantitatively evaluated by vent position. At this time, assuming a situation in which flammable liquids leak at indoor workplaces to form pools, the concentration of vapor evaporated from pools was compared to derive the optimal vent position. As a result of research on toluene with high vapor density, ventilation efficiency was confirmed to be the highest at the upper supply-lower exhaust, and it is judged that introducing it can achieve about 3.7 times ventilation effect at the same maintenance cost. Through this study, it is expected that the workplace will be able to secure workers' safety by applying simulation results and installing ventilation ports.