• Title/Summary/Keyword: Indoor Position

Search Result 524, Processing Time 0.035 seconds

Improved Localization Algorithm for Ultrasonic Satellite System (초음파위성시스템을 위한 개선된 위치추정 알고리즘)

  • Yoon, Kang-Sup
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.775-781
    • /
    • 2011
  • For the measurement of absolute position of mobile robot in indoor environments, the ultrasonic positioning systems using ultrasound have been researched for several years. Most of these ultrasonic positioning systems to avoid interference between the ultrasound are used for sequential transmitting. However, due to the use of sequential transmitting, the positions of transmitter to receive an ultrasound will change when the mobile robot moves. Therefore the accuracy of positioning is reduced. In this paper, the new position estimation algorithm with weighting factor according to the time of receipt is proposed. By applying the proposed algorithm to existing Ultrasonic Satellite System(USAT), the improved USAT is configured. The positioning performance of the improved USAT with the proposed position estimation algorithm are verified by experiments.

Analysis of Hygrothermal Performance of Wood Frame Walls according to Position of Insulation and Climate Conditions

  • Kang, Yujin;Chang, Seong Jin;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.264-273
    • /
    • 2016
  • The insulation of a building envelope influences the hygrothermal performance as well as the thermal performance of the building. While most of Korean wood frame houses have an interior insulation system, the exterior insulation system with high thermal performance has recently been applied. While it can be effective in energy savings for better insulation performance, without consideration of the moisture, condensation and mould growth can occur. Therefore, in this study, hygrothermal behaviour, water content, and mould growth were analyzed using hygrothermal simulation of an exterior wall of a wood frame house with which the interior insulation and exterior insulation systems were applied. The wall layer included Wall A (Interior insulation) and Wall B (Exterior insulation). The U-values were identified as 0.173 and $0.157W/m^2K$, respectively. The total water content and OSB absolute water content of Wall A were confirmed to be higher than those of Wall B, but the absolute water content did not exceed the reference value of 20%. The moisture content of the two walls was determined to be stable in the selected areas. However, mould growth risk analysis confirmed that both Wall A and Wall B were at risk of mould growth. It was confirmed that as the indoor setting temperature decreased, the mould index and growth rate in the same area increased. Therefore, the mould growth risk was affected more by indoor and outdoor climate conditions than by the position of the insulation. Consequently, the thermal performance of Wall B was superior to that of Wall A but the hygrothermal performances were confirmed to be similar.

A Study on the Image-based Automatic Flight Control of Mini Drone (미니드론의 영상기반 자동 비행 제어에 관한 연구)

  • Sun, Eun-Hey;Luat, Tran Huu;Kim, Dongyeon;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.536-541
    • /
    • 2015
  • In this paper, we propose a the image-based automatic flight control system for the mini drone. Automatic flight system with a camera on the ceiling and markers on the floor and landing position is designed in an indoor environment. Images from the ceiling camera is used not only to recognize the makers and landing position but also to track the drone motion. PC sever identifies the location of the drone and sends control commands to the mini drone. Flight controller of the mini drone is designed using state-machine algorithm, PID control and way-point position control method. From the, The proposed automatic flight control system is verified through the experiments of the mini drone. We see that known makers in environment are recognized and the drone can follows the trajectories with the specific ㄱ, ㄷ and ㅁ shapes. Also, experimental results show that the drone can approach and correctly land on the target positions which are set at different height.

Positioning using ZigBee and Ultrasound

  • Park, Chan-Sik;Kim, Seung-Beom;Kang, Dong-Youn;Yun, Hee-Hak;Cha, En-Jong;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.217-222
    • /
    • 2006
  • To find a location, GPS has been wildly used. But, it is hard to use in indoor because of very weak signal level. To meet indoor requirements, there have been many studies applying wireless communication networks such as WLAN, UWB and ZigBee. Among these, ZigBee is widely adopted in many WSN applications because it has an advantage of low-power and low-cost. In ZigBee, the RSSI is used as range measurement for ad-hoc network. The RSSI are converted to ranges using the signal attenuation model and these ranges become inputs of positioning methods. The obtained position with RSSI has large error because of its poor accuracy. To overcome this problem, ultrasonic sensors are added in many researches. By measuring the arrival time difference of ZigBee and ultrasound as a range measurement, the precise position can be found. However, there are still many problems: scheduling of beacons to transmit signals in a correct order, addition and synchronization of beacons and low-rate positioning rate. At this paper, an efficient method to solve these problems is proposed. In the proposed method, a node transmits ZigBee and ultrasound signal simultaneously. And beacons find the range with the received signals and send it back to a node with ZigBee. The position is computed in a node with the received ranges. In addition, a new positioning algorithm to solve the risk of the divergence in the linearization method and the singularity problem in the Savarese method is presented. Both static and dynamic experimental results show 0.02m RMS errors with high output rate.

  • PDF

Development of Indoor Navigation Control System for Swarm Multiple AR.Drone's (실내 환경에서의 AR.Drone 군집 비행 시스템 개발)

  • Moon, SungTae;Cho, Dong-Hyun;Han, Sang-Hyuck;Rew, DongYoung;Gong, HyunCheol
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.166-173
    • /
    • 2014
  • Recently, small quadcopters have been widely used in various areas ranging from military to entertainment applications because interest in the quadcopter increases. Especially, the research on swarm flight which control quadcopters simultaneously without any collision can increase success probability of a important mission. In addition the swarm flight can be applied for demonstrating choreographed aerial maneuvers such as dancing and playing musical instruments. In this paper, we introduce multiple AR.Drone control system based on motion capture for indoor environment in which quadcopters can recognize current position each other and perform scenario based mission.

Global Ultrasonic System for Autonomous Navigation of Indoor Mobile Robots

  • Park, Seong-Hoon;Yi, Soo-Yeong;Jin, Sang-Yoon;Kim, Jin-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.846-851
    • /
    • 2004
  • In this paper, we propose a global ultrasonic system for the self-localization and autonomous navigation of indoor mobile robots. The ultrasonic sensor is regarded as the most cost-effective ranging system among the possible alternatives, and it is widely used for general purpose, since it requires simple electronic drivers and has relatively high accuracy. The global ultrasonic system presented in this paper consists of four or more ultrasonic generators fixed at reference positions in the global coordinates of an indoor environment and two receivers mounted on the mobile robots. By using the RF (Radio Frequency) modules added to the ultrasonic sensors, the robot is able to control the ultrasonic generation and to obtain the critical distances from the reference positions, which are required in order to localize is position in the global coordinates. A kalman filter algorithm designed for the self-localization using the global ultrasonic system and the experimental results of the autonomous navigation are presented in this paper.

  • PDF

Robust Relative Localization Using a Novel Modified Rounding Estimation Technique

  • Cho, Hyun-Jong;Kim, Won-Yeol;Joo, Yang-Ick;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.187-194
    • /
    • 2015
  • Accurate relative location estimation is a key requirement in indoor localization systems based on wireless sensor networks (WSNs). However, although these systems have applied not only various optimization algorithms but also fusion with sensors to achieve high accuracy in position determination, they are difficult to provide accurate relative azimuth and locations to users because of cumulative errors in inertial sensors with time and the influence of external magnetic fields. This paper based on ultra-wideband positioning system, which is relatively suitable for indoor localization compared to other wireless communications, presents an indoor localization system for estimating relative azimuth and location of location-unaware nodes, referred to as target nodes without applying any algorithms with complex variable and constraints to achieve high accuracy. In the proposed method, the target nodes comprising three mobile nodes estimate the relative distance and azimuth from two reference nodes that can be installed by users. In addition, in the process of estimating the relative localization information acquired from the reference nodes, positioning errors are minimized through a novel modified rounding estimation technique in which Kalman filter is applied without any time consumption algorithms. Experimental results show the feasibility and validity of the proposed system.

A Study on the Risk Assessment Method of Indoor-Impulsive Noise (실내 충격소음 위험 평가 방법에 관한 연구)

  • Chung, Sung Hak;Song, Ki Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.90-97
    • /
    • 2016
  • The objective of this study is to evaluate the operator's safety for the risk assessment method of impulsive noise division. Literature reviews on the basis of the impulsive noise study, the measuring methods and procedures, based on the results of the analysis process presents a risk assessment methods. In this study, analysis of the MIL-STD-1474D, B-duration graph for the peak noise level to cross the line from the measurement results is limited by the risk retracted. It is possible to determine whether there is quick can be determined whether the risk. Measurement positions measured by the microphone is installed on the risk of applying results are so located within the tolerance impulsive noise in the measurement position can interpret subjective safety is ensured. In addition, Proportional Dose technology was the proposed by the Patterson with the risk assessment method was applied to the indoor-impulsive noise. As results of this study, results for the same value of applying the technique of Proportional Dose technology results calculated by MIL-STD-1474D methods allows 1 count once increased in comparison to the result obtained.

Real-time Measurement Model of Indoor Environment Using Ultrasonic Sensor (초음파 센서를 이용한 실내 환경 실시간 계측 모델)

  • Lee Man hee;Cho Whang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6A
    • /
    • pp.481-487
    • /
    • 2005
  • In order to increase the autonomous navigation capability of a mobile robot, it is very crucial to develop a method for recognizing a priori known environmental characteristics. This paper proposes an ultrasonic sensor based real-time method for recognizing a priori known indoor environmental characteristics like a wall and corner. The ultrasonic sensor consists of an ultrasonic transmitter and two ultrasonic receivers placed symmetrically about the transmitter. Unlike previous methods the information obtained from the sensor is processed in real-time by extended Kalman filter to be able to correct the position and orientation of robot with respect to known environmental characteristics.

Theoretical Limits Analysis of Indoor Positioning System Using Visible Light and Image Sensor

  • Zhao, Xiang;Lin, Jiming
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.560-567
    • /
    • 2016
  • To solve the problem of parameter optimization in image sensor-based visible light positioning systems, theoretical limits for both the location and the azimuth angle of the image sensor receiver (ISR) are calculated. In the case of a typical indoor scenario, maximum likelihood estimations for both the location and the azimuth angle of the ISR are first deduced. The Cramer-Rao Lower Bound (CRLB) is then derived, under the condition that the observation values of the image points are affected by white Gaussian noise. For typical parameters of LEDs and image sensors, simulation results show that accurate estimates for both the location and azimuth angle can be achieved, with positioning errors usually on the order of centimeters and azimuth angle errors being less than $1^{\circ}$. The estimation accuracy depends on the focal length of the lens and on the pixel size and frame rate of the ISR, as well as on the number of transmitters used.