• Title/Summary/Keyword: Indoor Location Tracking

Search Result 110, Processing Time 0.023 seconds

Study of Multi-Resident Location Tracking Service Model Based on Context Information (상황정보 기반의 다중 거주자 위치 추적 서비스에 관한 연구)

  • Won, Jeong Chang;Man, Ko Kwang;Chong, Joo Su
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.5
    • /
    • pp.141-150
    • /
    • 2014
  • In recent years, because of the development of ubiquitous technology in healthcare research is actively progress. Especially, healthcare service area is change to home for the elderly or patients from hospital. The technology to identify residents in a home is crucial for smart home application services. However, existing researches for resident identification have several problems. In this case, residents are needed to attach of various sensors on their body. Also relating private life, it is difficult to apply to resident's environment. In this paper, we used constraint-free sensor and unconscious sensor to solve these problems and we limited using of sensor and indoor environment in the way of working economical price systems. The way of multi-resident identification using only these limited sensors, we selected elements of personal identifications and suggested the methods in giving the weight to apply these elements to systems. And we designed the SABA mechanism to tract their location and identify the residents. It mechanism can distinguish residents through the sensors located each space and can finally identify them by using the records of their behaviors occurred before. And we applied the mechanism designed for applications to approve this location tracking system. We verified to the location tracking system performance according to the scenario.

Indoor Location Tracking for First Responders using Data Network (데이터 통신망을 이용한 복수 구조요원 실내 위치 추적)

  • Chun, Se-Bum;Lim, Soon;Lee, Min-Su;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.810-815
    • /
    • 2013
  • In case Wi-Fi network based First responder's position tracking system is used, range measurement must be generated from RSSI finger print database. However, it is impossible to build up finger print database and to perform rescue operation at same time in the scene of rescue. In this paper, improvised Wi-Fi network without finger print database and pedestrian dead reckoning based first responders tracking system is proposed.

A Study on magnetic sensor calibration for indoor smartphone position tracking (스마트폰 실내 위치 추적을 위한 지자기 센서 보정에 관한 연구)

  • Lee, Dongwook;Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.229-235
    • /
    • 2018
  • Research on indoor location tracking technology using smart phone is actively being carried out. Especially, in order to display the movement path of the smartphone on the map, the azimuth angle should be estimated by using the geomagnetic sensor built in most smart phones. Due to the distortion of the magnetic field due to the surrounding steel structure and the inclination of the smartphone, the estimation error of azimuthal angle may be occurred. In this paper, we propose a correction method of the geomagnetic sensor at the stationary state and a correction method for the inclination of the smartphone. We also propose a method to correct the azimuth error due to the difference between the magnetic north and the grid north.

Hybrid Indoor Position Estimation using K-NN and MinMax

  • Subhan, Fazli;Ahmed, Shakeel;Haider, Sajjad;Saleem, Sajid;Khan, Asfandyar;Ahmed, Salman;Numan, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4408-4428
    • /
    • 2019
  • Due to the rapid advancement in smart phones, numerous new specifications are developed for variety of applications ranging from health monitoring to navigations and tracking. The word indoor navigation means location identification, however, where GPS signals are not available, accurate indoor localization is a challenging task due to variation in the received signals which directly affect distance estimation process. This paper proposes a hybrid approach which integrates fingerprinting based K-Nearest Neighbors (K-NN) and lateration based MinMax position estimation technique. The novel idea behind this hybrid approach is to use Euclidian distance formulation for distance estimates instead of indoor radio channel modeling which is used to convert the received signal to distance estimates. Due to unpredictable behavior of the received signal, modeling indoor environment for distance estimates is a challenging task which ultimately results in distance estimation error and hence affects position estimation process. Our proposed idea is indoor position estimation technique using Bluetooth enabled smart phones which is independent of the radio channels. Experimental results conclude that, our proposed hybrid approach performs better in terms of mean error compared to Trilateration, MinMax, K-NN, and existing Hybrid approach.

An Improvement for Location Accuracy Algorithm of Moving Indoor Objects (실내 이동 객체의 위치 정확도 개선을 위한 알고리즘)

  • Kim, Mi-Kyeong;Jeon, Hyeon-Sig;Yeom, Jin-Young;Park, Hyun-Ju
    • Journal of Internet Computing and Services
    • /
    • v.11 no.2
    • /
    • pp.61-72
    • /
    • 2010
  • This paper addresses the problem of moving object localization using Ultra-Wide-Band(UWB) range measurement and the method of location accuracy improvement of the indoor moving object. Unlike outdoor environment, it is difficult to track moving object position due to various noises in indoor. UWB is a radio technology that has attention for localization applications recently. UWB's ranging technique offer the cm accuracy. Its capabilities for data transmission, range accurate estimation and material penetration are suitable technology for indoor positioning application. This paper propose a positioning algorithm of an moving object using UWB ranging technique and particle filter. Existing positioning algorithms eliminate estimation errors and bias after location estimation of mobile object. But in this paper, the proposed algorithm is that eliminate predictable UWB range distance error first and then estimate the moving object's position. This paper shows that the proposed positioning algorithm is more accurate than existing location algorithms through experiments. In this study, the position of moving object is estimated after the triangulation and eliminating the bias and the ranging error from estimation range between three fixed known anchors and a mobile object using UWB. Finally, a particle filter is used to improve on accuracy of mobile object positioning. The results of experiment show that the proposed localization scheme is more precise under the indoor.

Design and implementation of low-power tracking device based on IEEE 802.11 (IEEE 802.11 기반 저전력 위치 추적 장치의 설계 및 구현)

  • Son, Sanghyun;Kim, Taewook;Baek, Yunju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.466-474
    • /
    • 2014
  • According to wireless network technology and mobile processors performance were improved, the small wireless mobile device such as smart phones has been widely utilized. The mobile devices can be used GPS information, thereby the services based on location information was increased. GPS was impossible to provide location information in indoor and signal shading environment, and the tracking systems based on short distance wireless communication are required infrastructure. The IEEE 802.11 based tracking system is possible estimation using APs, however the tracking device is exhausted battery power seriously. In this paper, we propose IEEE 802.11 based low-power tracking system. We reduced power consumption from channel scanning and network connection. For performance evaluation, we designed and implemented the tracking tag device, and measured power consumption of the device. As the simulation result, we confirmed that the power consumption was reduced 46% compare to the standard execution.

PROFILE MANAGEMENT FOR MOVING OBJECTS

  • Kim, Jae-Chul;Lee, Seong-Ho;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.81-84
    • /
    • 2007
  • In this research, we will accomplish the investigation of the devices and data models which are used in the existing indoor and outdoor systems. Based on the investigation, we will seize the additional requirements for the integration of the legacy system and then we will propose the various methods which support the additional requirements. By applying the various methods in the heterogeneous environments, we will solve the legacy problems and propose the methods for the final goal that is to provide the seamless moving object tracking. The scope of this research is to propose the integration methods, developing the actual location tracking system model without modifying the legacy infrastructures.

  • PDF

Study on the Positioning Method using BLE for Location based AIoT Service (위치 기반 지능형 사물인터넷 서비스를 위한 BLE 측위 방법에 관한 연구)

  • Ho-Deok Jang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2024
  • Smart City, a key application area of the AIoT (Artificial Intelligence of Things), provides various services in safety, security, and healthcare sectors through location tracking and location-based services. an IPS (Indoor Positioning System) is required to implement location-based services, and wireless communication technologies such as WiFi, UWB (Ultra-wideband), and BLE (Bluetooth Low Energy) are being applied. BLE, which enables data transmission and reception with low power consumption, can be applied to various IoT devices such as sensors and beacons at a low cost, making it one of the most suitable wireless communication technologies for indoor positioning. BLE utilizes the RSSI (Received Signal Strength Indicator) to estimate the distance, but due to the influence of multipath fading, which causes variations in signal strength, it results in an error of several meters. In this paper, we conducted research on a path loss model that can be applied to BLE IPS for proximity services, and confirmed that optimizing the free space propagation loss coefficient can reduce the distance error between the Tx and Rx devices.

Advanced Indoor Location Tracking Using RFID (RFID를 이용한 개선된 실내 위치 추적)

  • Joo, Won-lee;Kim, Hyo-Sun;Jung, Yeong-Ah;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.425-430
    • /
    • 2017
  • RFID is a technology that uses radio frequency to read information in tags attached to objects or people. Because it reads the information without contact when tracking the location using tags in a RFID system, there can be errors between the actual position and measured position. In this paper, three methods (the method of radiation pattern, the method of the median value, and the method using both the radiation pattern and median value) are proposed to identify the location of objects or people using the RFID technique. The location identification system based on RFID was constructed and tags were arranged in a square pattern. The real location and experimentally predicted location of an object containing a reader were compared to confirm the error. Instead of the existing papers that obtained the approximately location of a reader by calculating the center of gravity of all tags read by that reader, in this study, the predicted location was obtained by the median value and the radiation pattern. This study validated which method was the most efficient among the three methods proposed in this paper through the data of the read tags. As a result, the method of the median value had the smallest error among those assessed.