• Title/Summary/Keyword: Indoor Illumination

Search Result 143, Processing Time 0.026 seconds

A Study About Fact Influence on Performance at Indoor Visible Light Communication (실내 가시광 통신 시스템에서 성능에 영향을 주는 요인에 관한 연구)

  • Yi, Chang-Woo;Choi, Deok-Jai;Kim, Han-Pil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.10
    • /
    • pp.1-8
    • /
    • 2013
  • Wireless Visible Light Communication is the technology that enables communication using LED illumination Infrastructure instead of existing illumination such as incandescent lamp or fluorescent light. Because VLC uses light for communication, it has no problem of frequency permission and is harmless to human body. It is also possible to check the communication through eye. So VLC can be used as a supplement to the Radio Frequency communication, Infrared in indoor environment. So far, researchers on the LED Visible light communication have focused on the increasing transmission speed, transmission distance, modulation method. However, there is few research of main factors that influence on system performance. System performance has been mainly predicted through simulation. In this paper, I recognized that these factors such as outside light noise, obstacle, LED panel position or emitted angle have a great impact on wireless communication system. So I experimented VLC system by changing distance and position to discover location suitable for BER regulation.

Scheduling with Heterogeneous QoS Provisioning for Indoor Visible-light Communication

  • Dong, Xiaoli;Chi, Xuefen;Sun, Hongliang;Zhu, Yuhong
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.39-46
    • /
    • 2018
  • Visible-light communication (VLC) combined with advanced illumination can be expected to become an integral part of next-generation communication networks. One of the major concerns in VLC implementation is developing resource-allocation schemes in a multi-user scenario. However, the scheduling for heterogeneous quality of service (QoS) traffic has not been studied so far, for the indoor VLC downlink system. In this paper, we creatively introduce effective-bandwidth and effective-capacity theory into the multi-user scheduling (MUS) problem, to guarantee the user's statistical delay QoS. We also take account of the aggregate interference (AI) in the indoor VLC downlink system, and analyze its impact on the user-centric MUS problem for the first time. Simulations show that the AI has a nonnegligible influence on the scheduling result, and that the proposed scheduling scheme could guarantee the user's QoS requirement under the premise of ensuring sum capacity.

Development of Comfort Feeling Structure in Indoor Environments Using Hybrid Neuralnetworks (하이브리드 신경망을 이용한 실내(室內) 쾌적감성(快適感性)모형 개발)

  • Jeon, Yong-Ung;Jo, Am
    • Journal of the Ergonomics Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.29-46
    • /
    • 2001
  • This study is about the modeling of comfort feeling structure in indoor environments. To represent the degree of practical comfort feeling level in an environment, we measured elements of human sense and resultant elements of comfort feeling such as coziness, refreshment, and freshness with physical values(temperature, illumination, noise. etc.). The relationships of elements of human sense and elements of comfort feeling were formulated as a fuzzy model. And a hybrid-neural network with three layers were designed where obtained from fuzzy membership function values of the elements of human sense were used as inputs, and given as fuzzy membership function values of resultant elements of comfort feeling were used as outputs. Both kinds of fuzzy membership function values were obtained from physical values. The network was trained by measured data set. The proposed hybrid-neural network were tested and proposed a more realistic model of comfort feeling structure in indoor environments.

  • PDF

Study on Indoor Thermal Comfort of Advanced EMU (차세대전동차의 실내온열환경 연구)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Park, Sung-Hyuk;Oh, Seh-Chan;Kim, Young-Nam
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1799-1802
    • /
    • 2008
  • More than 7 million people use the Seoul metropolitan subway network daily. This number tends to increase due to the increase of oil price. Indoor air quality of electrical multiple unit (EMU) is strongly affected by outdoor air quality, however, indoor thermal comfort is subjected to heating, ventilating, and air conditioning (HVAC) system of EMU. In general, air temperature, humidity, air velocity, surface temperature, and illumination are key parameters affecting thermal comfort of passenger. It is known that the well-designed HVAC system should improve the thermal comfort of passengers and should increase the energy efficiency of HVAC system also. In this study, we analyzed the thermal comfort of advanced EMU developed by Korea Railroad Research Institute by using the computational fluid dynamics (CFD) in order to find the optimum HVAC system which can improve thermal comfort of passengers with a minimal energy use.

  • PDF

Low Cost Omnidirectional 2D Distance Sensor for Indoor Floor Mapping Applications

  • Kim, Joon Ha;Lee, Jun Ho
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.298-305
    • /
    • 2021
  • Modern distance sensing methods employ various measurement principles, including triangulation, time-of-flight, confocal, interferometric and frequency comb. Among them, the triangulation method, with a laser light source and an image sensor, is widely used in low-cost applications. We developed an omnidirectional two-dimensional (2D) distance sensor based on the triangulation principle for indoor floor mapping applications. The sensor has a range of 150-1500 mm with a relative resolution better than 4% over the range and 1% at 1 meter distance. It rotationally scans a compact one-dimensional (1D) distance sensor, composed of a near infrared (NIR) laser diode, a folding mirror, an imaging lens, and an image detector. We designed the sensor layout and configuration to satisfy the required measurement range and resolution, selecting easily available components in a special effort to reduce cost. We built a prototype and tested it with seven representative indoor wall specimens (white wallpaper, gray wallpaper, black wallpaper, furniture wood, black leather, brown leather, and white plastic) in a typical indoor illuminated condition, 200 lux, on a floor under ceiling mounted fluorescent lamps. We confirmed the proposed sensor provided reliable distance reading of all the specimens over the required measurement range (150-1500 mm) with a measurement resolution of 4% overall and 1% at 1 meter, regardless of illumination conditions.

A Study on the Lighting and the Photosynthetic Photon Flux Density with LED for Light Reinforcement (보광용 LED의 광특성과 광자속밀도 특성)

  • Lee, Boong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.333-338
    • /
    • 2021
  • This study determined the characteristics of LED illumination and photosynthetically active radiation flux density (PPFD) for LED lighting design in an indoor plant factory. This was done based on the light wavelength and PPFD intensity required for plant growth. It has been found that the wavelength and intensity are decreased according to the measuring distance, and green light has an important role in illumination characteristics, while blue light has an important role in the PPFD characteristics. Considering only the photosynthetic properties of plants, the effective order of photosynthesis was blue>red>white>green. When the measurement distance was 30 [cm], it was found that reduction levels of 60 [cm], 90 [cm], and 120 [cm] decreased to about 36 [%], 18 [%], and 10 [%], respectively. As a result of the characteristics of mixed light (red:blue=2:1, 3:1, 4:1) and the measurement distance, when the measured value at 30 [cm] is 100%, the measured value at 120 [cm] is 10-11 [%]. From the obtained results, an optimal structure was proposed for maximizing the light efficiency of an indoor greenhouse for future research.

Evaluation Study of a Double Blind Light Pipe Daylighting System Efficiency and an Illumination Energy Reduction (이중 블라인드 광파이프 주광 조명시스템 효율 및 조명에너지 절감량 평가 연구)

  • Kang, Eun-Chul;Yoo, Seong-Yeon;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.89-95
    • /
    • 2013
  • A DBLP(Double blind light pipe) daylight system can be installed at a building exterior wall or roof to replace artificial light during the day time. This system was consisted of a double blind light collector, a mirror duct type light transformer and a prism light pipe distributor. The double blinds were used to track the sun's altitude and azimuth movements to collect the sunlight throughout the day. The sunlight collected by the light collector was reflected on the first mirror and the second mirror and sent to the light pipe through the light transformer. The transformer was designed to deliver the sunlight into the light pipe efficiently. The light distributor plays a role in diffusing the sunlight coming in through the light collector to be used for indoor lighting. In this paper, a DBLP system has been designed, installed and tested at a KIER daylighting twin test cell. The DBLP daylighting system was applied to the experimental test cell which has an indoor area of 2.0 m wide ${\times}$ 2.4 m height ${\times}$ 3.8 m length. The experiment was conducted from January 30 to February 27, 2012, under clear skies and partially cloudy skies. Data was collected from 10:00 am to 16:00 pm every 2 minute and the average was calculated for every 30 minute of the data collection to obtain the system efficiency. The results indicated that the DBLP system efficiency was evaluated as 11.67%. The DBLP system indoor illumination energy reduction was predicted as 0.822 kWh/day. This could replace 4 sets of a 32W fluorescent lamp operating 6.4 hours per a day.

A Study on Performance Evaluation of Light Shelf according to the Reflectivity of Interior Space (실내 공간의 반사율에 따른 광선반 성능평가 연구)

  • Jeon, Gangmin;Lee, Heangwoo;Kim, Yongseong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.5
    • /
    • pp.461-470
    • /
    • 2015
  • There has been a significant increase in the amount of research on reducing the lighting power consumption of buildings and also an increasing demand for technological development. Light shelf has been recognized as one of the most efficient solutions to this issue and related researches have been conducted, which have mostly focused on factors related to simple light shelves and are not suitable as an appropriate basis for the design of light shelves. Thus this study aims to establish the proper design basis for light shelves by evaluating the performance of shelves per reflection rate in indoor areas. Power consumption rate and indoor illumination intensity distribution of a testbed built based on actual living conditions were calculated for the performance evaluation, of which the results are as following: 1) Reduction of reflection rate of ceiling and walls caused average illumination intensity in summer, winter and median seasons, and evenness per reflection rate of indoor areas was found to be different in summer, winter and median seasons, making it a necessary consideration for designing light shelves. 2) Calculation of power consumption from lighting control showed that a high reflection rate of indoor areas may be suitable for power consumption reduction, and that reflection rates higher than 80% for ceilings and higher than 75% for walls in terms of the efficiency of researches on the indoor reflection rate and its application would be appropriate. This study is meaningful as the research focuses on light shelves based on considering indoor environmental factors. More studies will be required that consider a variety of factors.

A Study on Environmental Standards of School Building (교사환경기준에 관한 연구)

  • Hong, Seok-Pyo;Park, Young-Soo
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.1 no.1
    • /
    • pp.11-43
    • /
    • 2000
  • The purpose of this study was, through analyzing the previous researches, to grasp the present status of environment of school building(ESB), research the sundry records of each element and, through comparative analysis of the standard of ESB in Korea, the United States, and Japan, select the normative standard of ESB, to clarify the point at issue presented in Regulation of Construction & facility Management for Elementary and and Secondary School in Korea, and to suggest an alternative preliminary standard of ESB. To carry out a research for this purpose, these were required: 1. to investigate the existing present status of ESB, 2. to make a comparative analysis of the standard of ESB in each country, 3. to suggest the normative standard of preliminary standard of ESB, 4. to analyze the controversial points of the standard of ESB in Korea, 5. to suggest an alternative preliminary standard of ESB. The conclusions were as follows: 1. Putting, through analyzing the previous researches, the existing present status of ESB together, it seemed that lighting environment, indoor air environment and noise environment were all in poor conditions. 2. In the result of a comparative analysis of the standard of ESB in Korea, Japan and the United States, in Korea the factors of each lighting and indoor air environment were not presented properly, in Japan, in lighting environment aspect, the standard on natural lighting and the factors on brightness were not presented., and in the USA the essential factors of each environment were throughly presented. In the comparison of the standards on each factor, Korea showed that the standard level presented was less properly prescribed than those of the USA and Japan but it also showed that the standard levels prescribed in the USA and in Japan were mostly similar to the standard levels in records investigated. 3. With the result of the normative standard selection on School Builiding environment factor of prescribed in this study, the controversial points of the standard of ESB in Korea were analyzed and the result was utilized to suggest new preliminary standard of ESB. 4. As the result of the analysis of the controversial points of the standard of ESB in Korea, it was found that the standard of ESB in Korea should be established on a basis of School Health Act and be concretely presented in School Health Regulation and School Health Rule. The factors of each environment was improperly presented in the existing standard of ESB in Korea. Moreover the standard of them was inferior to that of the records investigated and those of in the USA and in Japan and it also showed that the standard of it in Korea was improper to maintain Comfortable Learning Environment. 5. A suggested preliminary standard of ESB acquired through above study as follows: 1) In this study a new kind of preliminary standard of ESB is divided into lighting environment, indoor air environment, noise environment, odor environment and for above classification, reasonable factor and standard should be established and the controling way on each standard and countermeasures against it should be considered. 2) In lighting environment, the factors of natural lighting are divided into daylight rate, brightness, glare. In the standard on each factor, daylight rate should secure 5% of a mean daylight rate and 2% of a minimum daylight rate, brightness ratio of maximum illumination to minimum illumination should be under 10:1, and in glare there should not be an occurrence factor from a reflector outside of the classroom. And the factors of unnatural lighting are illumination, brightness, and glare. In the standard on each factor, illumination should be 750 lux or more, brightness ratio should be under 3 to 1, and glare should not occur. And Optimal reflection rate(%) of Colors and Facilities of Classroom which influences lighting environment should be considered. 3) In indoor air environment factors, thermal factors are divided into (1) room temperature, (2) relative humidity, (3) room air movement, (4) radiation heat, and harmful gases (5) CO, (6) $CO_2$ that are proceeded from using the heating fuel such as oval briquettes, firewood, charcoal being used in most of the classroom, and finally (7) dust. In the standard on each factor, the next are necessary; room temperature: $16^{\circ}C{\sim}26^{\circ}C$(summer : $E.T18.9{\sim}23.8^{\circ}C$, winter: $E.T16.7{\sim}21.7^{\circ}C$), relative humidity: $30{\sim}80%$, room air movement: under 0.5m/sec, radiation heat: under $5^{\circ}C$ gap between dry-bulb temperature and wet-bulb temperature, below 1000 ppm of ca and below 10ppm of $CO_2$, dust: below 0.10 $mg/m^3$ of Volume of dust in indoor air, and ventilation standard($CO_2$) for purification of indoor air : once/6 min.(about 7 times/40 min.) in an airtight classroom. 4) In the standard on noise environment, noise level should be under 40 dB(A) and the noise measuring way and the countermeasures against it should be considered. 5) In the standard on odor environment, odor level under Physical Method should be under 2 degrees, and the inspecting way and the countermeasures against it should be considered.

  • PDF

Implementation of Indoor Environment Monitoring and Automatic Control System based on Internet of Things (사물인터넷 기반 실내 환경 모니터링 및 자동제어 시스템 구현)

  • Lee, Sang Hoon;Kim, Jin-Yeop;Kim, Su-Yeon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.6
    • /
    • pp.71-80
    • /
    • 2016
  • Along with the increase in the standard of living, the interest and awareness level of the public about environmental issues have also gradually increased. Recently, time spent on indoor activities have increased and the need for awareness and demand on methods in improving the quality of an indoor environment has been recognized. The purpose of this study is to sense the environment information through real-time monitoring of the room environment by using the IoT based technology and to maintain and improve the indoor environment to an appropriate level through the developed interlocking controller device. This provides an automatic control system in improving the indoor environment at home and other small areas like general offices in place of the traditional passive interior environmental improvement actions or large-scale facility control system. A status analysis with the relative reference values of the air quality and CO2, temperature and humidity and illumination and noise was applied through transmitting a control signal to automatic control module in accordance with the nine indoor environment standards set to improve the indoor environment.