• Title/Summary/Keyword: Indoor Flight

Search Result 44, Processing Time 0.025 seconds

A method of floor recognition by using ultrasonic sensors for mobile robot navigation (초음파 센서를 이용한 로봇의 실내 평면 구조 인식)

  • 고중협;김완주;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.125-132
    • /
    • 1993
  • When a mobile robot moves around autonomously without man-made landmarks, it is essential to recognize the placement of surrounding objects especially for current position estimation, obstacle avoidance, or homing into the work station. In this paper, we propose a novel approach to recognize the floor paln for indoor mobile robot navigation using ultrasonic time-of-flight method. We model the floor plan as a collection of polygonal plane objects and recognize the floor plan by locating edges and vertices of the objects. The direction is estimated by the patterns of transmission beam and reception sensitivity of the ultrasonic transducer, and the distance is estimated by the correlation detection method. We show the validity of the proposed approach through experimental results and discuss the resolution and the accuracy of the estimation of direction and distance.

  • PDF

A Study on Design Method and Control of Blimp-4 Rotor Craft (Blimp형 4 Rotor Craft의 설계방법에 관한 연구)

  • 박윤수;이호길;김진영;원대희;박종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.996-1000
    • /
    • 2003
  • In this paper, Fly robot with electric power, a kind of Unmanned aerial vehicle (UAV), is considered as an autonomous hovering platform, capable of vertical lift-off, landing and stationary hovering. This aircraft has four rotor and DC motors of electrical Power, which is capable of omni-direction for indoor application. In the earlier days of vertical flight experimentation developers looked at the intuitively easy control functionality of 4 rotor designs. But we need to obtain design method of suitable structures and adequate components because the existing prototypes of 4 rotor-craft don't analyze the propeller, motor characteristic and propose a methodology to optimize this system. In this paper, we will show the new 4 rotor craft with blimp, analyze design and manufacturing method of 4 rotor craft system. Also we prove propriety of our design and manufacturing method by being based on thrust and motor experiment.

  • PDF

Implementation of ZUPT on RPA Navigation System for GNSS Denied Ground Test

  • Shin, Hyeoncheol
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.125-129
    • /
    • 2020
  • In this paper, Zero velocity UPdaTe (ZUPT) is implemented on the navigation system of Remotely Piloted Aircraft for GNSS denied environment. RPA's navigation system suffers from lack or loss of satellite signal while maintenance or ground test inside a hangar. Although some of the hangars install GPS repeaters for indoor tests, the anti-jamming equipment with array antenna blocks the repeater signal regarding them as hostile jamming signal. With ZUPT, an aircraft navigation system can be tested free from the divergence of navigation solution without line-of-sight satellites. The designed ZUPT aided centralized Kalman Filter is implemented on the Embedded GPS&INS and simulated with Captive Flight Test data. The simulation result shows stable navigation solution without GNSS updates.

Chebyshev Filter Design for Pressure Measurement Improvement of Drone (드론의 대기압 측정 개선을 위한 Chebyshev 필터 설계)

  • Choi, Young-hwa;Han, Man-soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.256-257
    • /
    • 2017
  • Pressure sensors are usually used in the measurement of drone altitude in an indoor environment since GPS (global positioning system) signal is not available. In this paper, we propose a new method which uses the Chebyshev filter to decrease a high frequency error in the measured values of the pressure sensor. Considering performance of a drone flight controller, the filter order is limited to the $3^{rd}$ order. We explain the transfer function of the $3^{rd}$ order Chebyshev filter.

  • PDF

Improvement of Multilateration using Vector Prediction Algorithm and Kalman Filter (벡터 예측 알고리즘과 칼만 필터를 이용한 다변측량법 개선)

  • Kim, Jung-Ha;Joo, Yang-Ick;Lee, Sung-Geun;Park, Sang-Gug;Seo, Dong-Hoan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2792-2799
    • /
    • 2012
  • Multilateration that consists of three or more fixed nodes has been widely used in the field of indoor real time location system(RTLS). However, when one or two among fixed nodes are partially out of communication reachability due to obstruction and unstable node, it is difficult to obtain an efficient location information. In order to improve the challenges of poor ranging measurements and fluctuations in these environment, this paper presents, based on TOF(Time of Flight), a new algorithm which can reduce the inherent ranging measurements errors in the conventional multilateration using a vector prediction algorithm for the displacement estimation of mobile node and Kalman filter for an efficient distance average. Even if a person moves with mobile node and then it fails ranging measurement from some of fixed nodes, the proposed algorithm using a present and previous measurement value can predict the distance between mobile node and fixed node which fails ranging measurement. The experimental results are shown that the proposed system improves the localization accuracy and efficiency compared with conventional method, respectively.

The Development of Coaxial Rotor MAV (동축 반전 로터 MAV 개발)

  • Chae, Sang-Hyun;Baek, Sun-Woo;Lee, Sang-Il;Kim, Tae-Woo;Lee, Jun-Bae;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.875-883
    • /
    • 2007
  • The objective of this research was to develop a coaxial rotor MAV which is suitable for a indoor reconnaissance mission. Preliminary design parameters were determined, based on the dimensions of other reference MAVs. The designed rotor performance was estimated by Blade Element Momentum Theory, and the analyses were compared against the measurements. Stability and vibration issues of the prototype were circumvented by making parts of vehicle with NC machine, as well as equipped with teetering rotor and stabilizer. The designed coaxial rotor MAV showed successfully flight equipped with video camera. However, it was founded that further research activities should be focused on efficient rotor design to obtain better performance.

Design of an Autonomous Hover Control System for a Small Quadrotor

  • Raharja, Gilar B.;Kim, Gyu-Beom;Yoon, K.J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.338-344
    • /
    • 2010
  • This paper discusses the development of the control system of a mini quadrotor in Konkuk University for indoor applications. The attitude control system consists of a stability augmentation system, which acts as the inner loop control, and a modern control approach based on modeling will be implemented as the outer loop. The inner loop control was experimentally satisfied by a proportional-derivative controller; this was used to support the flight test in order to validate the modeling. This paper introduces the mathematical model for the simulation and design of the optimal control on the outer loop control. To perform the experimental tests, basic electronic hardware was developed using simple configurations; a microcontroller used as the embedded controller, a low-cost 100 Hz inertial sensors used for the inertial sensing, infra-red sensors were employed for horizontal ranging, an ultrasonic sensor was used for ground ranging and a high performance propeller system built on an quadrotor airframe was also employed. The results acquired from this compilation of hardware produced an automatic hovering ability of the system with ground control system support for the monitoring and fail-safe system.

A Study on the Applications of GPS/Pseudolite Navigation System (GPS/의사위성의 통합 항법에 대한 응용 연구)

  • Lee Taik-Jin;Kim kang-Ho;So Hyung-Min;Kee Chang-Don;Noh Kwang-Hyun;Lee Ki-Duk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.729-738
    • /
    • 2006
  • In recent days, navigation technology becomes more important as location based service (LBS) such as E911 and telematics are considered as attractive business fields. Commercial LBS requires that navigation system should be inexpensive and available anytime and anywhere - indoors and outdoors. If we consider these requirements, it is out of question that GPS is the most favorite system in the world. However, GPS has a serious problem. The one is that GPS does not operate indoors well. This is because GPS satellites are about 20,000km above the ground so that indoor signals are too weak to be tracked in GPS receiver. And the other is that vertical accuracy is less than horizontal accuracy, because of GPS satellites' geometry. To solve these problems, many researches have been done around the world since 1990s. This paper is also one of them and we will introduce an excellent solution by use of pseudolite. Pseudolite is a kind of signal generator, which transmits GPS-like signal. So it is same as GPS satellite in ground. In this paper, we will propose the integrated navigation system of GPS and pseudolite and show the flight test results using RC airplane to proof our navigation system. As a result, we could improve the vertical accuracy of airplane into the horizontal accuracy.

Localization of Multiple Robots in a Wide Area (광역에서의 다중로봇 위치인식 기법)

  • Yang, Tae-Kyung;Choi, Won-Yeon;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.293-299
    • /
    • 2010
  • The multiple block localization method in a wide area for multiple robots using iGS is proposed in this paper. The iGS is developed for the indoor global localization using ultrasonic and RF sensors. To measure the distance between a mobile robot and a beacon, the tag on the mobile robot wakes up one beacon to send out the ultrasonic signal and measures the traveling time from the beacon to the mobile robot. As the number of robots is increased, the sampling time of localization also becomes longer. Note that only one robot can localize its own position calling beacons one by one during each of the sampling interval. This is a severe constraint for the localization of multiple robots in a wide area. This paper proposes an efficient localization algorithm for the multiple robots in a wide area which can be divided into multiple blocks. For a given block, a master beacon is designated to synchronize robots. By the access of the synchronization signal, each beacon in the selected group sends out an ultrasonic signal. When the robots in the block receive the ultrasonic signal, they can calculate their own locations based on the distances to the beacons, which are obtained by the multiplication of flight time and velocity of the ultrasonic signal. The efficiency of the algorithm is verified through the real experiments.

Rough Terrain Landing Technique of Quadcopter Based on 3-Leg Landing System (3-leg 랜딩 시스템 기반 쿼드콥터의 험지 착륙 기법)

  • Park, Jinwoo;Choi, Jiwook;Cheon, Donghun;Yi, Seungjoon
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.438-446
    • /
    • 2022
  • In this paper, we propose an intelligent three-legged landing system that can maintain stability and level even on rough terrain than conventional four-legged landing systems. Conventional landing gear has the limitation that it requires flat terrain for landing. The 3-leg landing system proposed in this paper extends the usable range of the legs and reduces the weight, allowing the quadcopter to operate in various environments. To do this, kinematics determine the joint angles and coordinates of the legs of the two-link structure. Based on the angle value of the quadcopter detected via the IMU sensor, the leg control method that corrects the posture is determined. A force sensor attached to the end of the leg is used to detect contact with the ground. At the moment of contact with the ground, landing control starts according to the value of the IMU sensor. The proposed system verifies its reliability in various environments through an indoor landing test stand. Finally, in an outdoor environment, the quadcopter lands on a 20 degree incline and 20 cm rough terrain after flight. This demonstrates the stability and effectiveness of the 3-leg landing system even on rough terrain compared to the 4-leg landing system.