• 제목/요약/키워드: Indoor Environmental Design

검색결과 230건 처리시간 0.031초

IFC-BIM을 활용한 실내공기질 인증 요구정보 생성 자동화 (Automation of Information Extraction from IFC-BIM for Indoor Air Quality Certification)

  • 홍심희;여창재;유정호
    • 한국건설관리학회논문집
    • /
    • 제18권3호
    • /
    • pp.63-73
    • /
    • 2017
  • 실내에서 보내는 시간이 증가함에 따라, 쾌적한 실내환경에 대한 요구가 증가되고 있다. 또한, 새집증후군과 같은 문제들에 관심이 집중되면서 실내공기질에 관한 요구 역시 증가되고 있다. 정부에서는 이러한 요구에 따라 실내환경을 관리하기 위하여 다양한 정책 및 제도를 제정하였으며, 공공건물에서의 친환경제도 인증을 필수화하였다. 실내공기질과 관련된 인증제도는 크게 3가지로 도면기반으로 인증을 평가하는 건강친화형 주택건설기준과 녹색건축인증 그리고 측정정보 기반으로 인증을 평가하는 실내공기질 인증이 있다. 이중 도면기반으로 인증을 평가는 제도들을 업무의 비중 대비 과도한 업무량이 요구된다. 친환경인증업무를 수행하는 한 회사의 인터뷰 결과 평균 업무비중보다 2배 이상의 소요시간이 필요한 것으로 조사되었다. 이는 2D기반의 작업환경에서 면적에 관한 정보들을 일일이 수작업으로 측정하여 필요이상의 업무를 수행하고 있기 때문으로 분석된다. 따라서 본 연구에서는 3D기반의 BIM모델을 이용한 실내공기질 평가 자동화 프로세스를 제시한다. 국제표준 포맷인 IFC 파일을 이용하여 필요한 면적정보 및 자재정보를 자동으로 추출하고 이를 모델에 적용하여 자동화하는 과정을 제시한다. 본 연구는 인증을 위해 필요한 업무시간을 단축하고 업무효율성을 높이는 것에 기여할 것으로 기대된다.

Task-Ambient 공조시스템의 난방시 열환경 특성에 관한 실험적 연구 (The Thermal Environmental Characteristics for Task-Ambient Air-Conditioning System in Heating Condition)

  • 이정재;윤창오;정광섭;한화택;박영철
    • 설비공학논문집
    • /
    • 제13권2호
    • /
    • pp.115-121
    • /
    • 2001
  • Recently, the requirement of healthier and more comfortable environment makes the zoning domain more details. However, it has limitation to satisfy the thermal comfort of an individual because of the effect of the heat generation from the OA machine and partitions in indoor room. In this paper, we certify the validity of task-ambient air-conditioning system that has been developed as a new concept of personal air-conditioning system, and specify design strategies for more efficient task-ambient air-conditioning system with a specification guided by indoor environmental characteristics analyzed through experiment data. In this experiment, we changed the temperature and the quantity of air-flow in task domain to understand characteristic behavior of the thermal environment and investigate the possibility of energy saving. The experiment result is that the environment of the task area depends on the condition of supply air, and though the airflow of the low temperature is supplied with the ambient area, the personal environment and the efficiency of energy saving are improved by controlling the temperature and the quantity of the air shot around the task domain.

  • PDF

Developing a BIM-Based Methodology Framework for Sustainability Analysis of Low Carbon High-Rise Buildings

  • Gan, Vincent J.L.;Li, Nan;Tse, K.T.;Chan, C.M.;Lo, Irene M.C.;Cheng, Jack C.P.
    • 국제학술발표논문집
    • /
    • The 7th International Conference on Construction Engineering and Project Management Summit Forum on Sustainable Construction and Management
    • /
    • pp.14-23
    • /
    • 2017
  • In high-density high-rise cities such as Hong Kong, buildings account for nearly 90% of energy consumption and 61% of carbon emissions. Therefore, it is important to study the design of buildings, especially high-rise buildings, to achieve lower carbon emissions in the city. The carbon emissions of a building consist of embodied carbon from the production of construction materials and operational carbon from energy consumption during daily operation (e.g., air-conditioning and lighting). An integrated analysis of both types of carbon emissions can strengthen the design of low carbon buildings, but most of the previous studies concentrated mainly on either embodied or operational carbon. Therefore, the primary objective of this study is to develop a holistic methodology framework considering both embodied and operational carbon, in order to enhance the sustainable design of low carbon high-rise buildings. The framework will be based on the building information modeling (BIM) technology because BIM can be integrated with simulation systems and digital models of different disciplines, thereby enabling a holistic design and assessment of low carbon buildings. Structural analysis program is first coupled with BIM to validate the structural performance of a building design. The amounts of construction materials and embodied carbon are then quantified by a BIM-based program using the Dynamo programming interface. Operational carbon is quantified by energy simulation software based on the green building extensible Markup Language (gbXML) file from BIM. Computational fluid dynamics (CFD) will be applied to analyze the ambient wind effect on indoor temperature and operational carbon. The BIM-based framework serves as a decision support tool to compare and explore more environmentally-sustainable design options to help reduce the carbon emissions in buildings.

  • PDF

Regulating Natural Lighting and Ventilation of Residential Buildings in Hong Kong Policy Implications for High-rise, High-density Housing Environments in South Korea

  • Seo, Bokyong;Kim, Sung-Hwa;Lee, Jae-Hoon
    • Architectural research
    • /
    • 제16권3호
    • /
    • pp.81-92
    • /
    • 2014
  • This study discusses the features of the lighting and ventilation regulations for residential buildings in Hong Kong. Given the compact built environment and public concerns about the environmental quality of housing, various lighting and ventilation regulations have been enacted in Hong Kong. The application of building regulations on the micro scale and incentive systems on the macro scale are present, and the governments' calls for more active participation of the private sector and use of the building environmental assessment tools were also noted. Unlike South Korea, however, Hong Kong was found to adopt more performance-based standards, consider the external factors of the lighting and ventilation conditions together with the indoor elements, and provide specific design guidelines. Notwithstanding the different climatic conditions and socio-political contexts of Hong Kong and South Korea, these findings provide some policy implications for the South Korean government in its efforts to achieve a healthy environment for high-rise, high-density housing. It is suggested that the South Korean government adopt more on-site measurement methods to reflect the environmental conditions accurately and broaden the scope and scale of the implementation of the lighting and ventilation regulations with more specific, practical planning and design guidelines.

녹색기술 무배수구 용기깊이와 슬릿(Slit)차이에 따른 디펜바키아 마리안느와 렉스 베고니아의 생육반응 (Growth Responses of Dieffenbachia amoena 'Marianne' and Begonia rex to Different Lengths and Numbers of Slitwalls in Drainless Containers for Green Technology)

  • 주진희;윤용한
    • 한국환경과학회지
    • /
    • 제21권8호
    • /
    • pp.931-938
    • /
    • 2012
  • The effects were investigated of different lengths and numbers of slitwalls in drainless containers on growth and change in soil moisture volumes on the growth of Diffenbachia amoena 'Marianne' and Begonia rex. Drainless containers filled with amended soil, with square shape ($240mm{\times}240mm$) were used, as well as three different sets of slitwalls (2, 4 or 8, respectively) in addition to non-slitwall containers. Two indoor foliage plants were grown in slitwall containers in randomized blocks with 3 replications in greenhouse conditions, from March to September, 2009. Soil moisture volumes per container were measured by weighing containers every 2 hours during the day. The change in soil moisture volumes showed considerable differences among slitwalls tested in comparison to control containers before and after twice-weekly irrigation. Particularly, the differences in the S2 (195mm, slitwall 2) containers were significantly greater than other containers tested. For Diffenbachia amoena 'Marianne', plant height, length of leaf, dry weight and fresh weight were higher with S2 containers than with those grown in other containers tested. The Begonia rex with the best quality in terms of plant height, length of leaf and width of leaf was grown in S8 (360mm, slitwall 8) containers. Particularly, statistical analysis has indicated that shoot fresh weights of Begonia rex grown in S8 were 3-fold higher than those grown in CS8 containers. The different results obtained within the two species led us to hypothesize a species-specific influence on indoor foliage plant performance. However, plants of both species grown in slitwall containers showed good results compared with plants grown in non-slitwall containers.

초등학교 교육환경의 범죄안전 환경계획방안에 관한 연구 (A Study on the Environmental Planning Guidelines for Crime Safety at Elementary School settings)

  • 변기동;하미경
    • 한국실내디자인학회논문집
    • /
    • 제22권2호
    • /
    • pp.211-219
    • /
    • 2013
  • The purpose of this study is to propose the environmental planning guidelines of elementary school settings for a crime safety. The research methodologies To achieve the goal, the literature review analysis and the survey were used as main research methodologies. The survey is organized as follows. First, elementary education facilities were divided into 20 spaces based on the major space. Second, after analyzing the domestic and foreign CPTED Guidelines, elements of environmental planning were classified to fit in the space. Based on this, the expert survey was conducted. The results of this study are as follows; First, it is necessary to consider specific places such as 'toilets', 'parking lot', 'in-between space', 'main access road', 'sub-access road' and 'harmful facilities around school' for safer school environment. Second, it is significant to plan 'equipment facilities' and 'outdoor space in the school setting' with priority for elementary education environment. Third, environmental planning elements for safer elementary schools can be classified into 9 factors(types) including 'natural surveillance planning', 'territoriality reinforcement planning', 'mechanical surveillance planning', 'access control planning' and 'neighborhood reinforcement planning'. Forth, regarding 'indoor space', crime-free elementary school environment can be build through 'natural surveillance planning' and 'territoriality reinforcement planning'. Finally, regarding 'outdoor space', the crime can be prevented through 'natural surveillance planning' and 'access control planning'.

대형의료기관 건축물에 대한 저탄소 녹색 친환경 설계 방안에 관한 연구 (A Study on Design Method depending upon Low Carbon Green Architecture of Big Medical Center)

  • 김종구;박종민
    • 대한토목학회논문집
    • /
    • 제35권4호
    • /
    • pp.987-996
    • /
    • 2015
  • 최근 환경부의 조사결과에 의하면 대규모 종합병원 대학병원(58개소)의 실내 공기질이 유지기준을 초과한 것으로 나타났다. 내부 공기질은 물론, 병원 규모의 증가와 병원 건축물 대형화에 따른 친환경 건축물 설계와 저탄소 녹색 설계의 필요성이 절실히 요구되고 있는 상황이다. 특히 각 의료기관의 건축물에서 발생되는 이산화탄소, 발열, 쓰레기, 폐에너지, 발전소 배열, 하수열 등의 증가로 인해 병원 환자를 비롯한 병원 고객의 건강에 많은 문제점을 가져다주고 있다. 따라서 본 연구는 대규모 의료 단지에 건설되는 각각의 건축물이 가지는 의료기관으로써의 특성을 고려한 저탄소 녹색 친환경 건축설계에 도입되어야 하는 기술 개발과 각 의료 건축물 간의 유기적 관계를 고려한 녹색 친환경 건축디자인 기술을 융합적으로 개발하는 것을 연구목표로 한다.

현장 콘크리트 타설시 양생온도와 대기시간을 고려한 배합설계 결정 (Design of a Concrete Mix Considering Curing Temperature and Delay Time in Concrete Placement)

  • 문성우;이성행;최현욱
    • 한국건설관리학회논문집
    • /
    • 제20권1호
    • /
    • pp.133-140
    • /
    • 2019
  • 콘크리트 타설현장의 조건은 콘크리트 강도에 커다란 영향을 주며, 따라서 콘크리트 배합은 콘크리트 타설시 현장조건을 반영할 수 있도록 설계되어야 한다. 즉, 콘크리트 배합은 현장양생온도, 작업환경, 타설방법 등을 고려하여 최적화하는 노력이 필요하다. 본 연구목적은 현장 콘크리트 타설시 발생하는 양생온도와 작업지연 등 외부영향인자를 고려하여 가장 대응을 잘 할 수 있는 콘크리트 배합설계를 제공하는 것이다. 연구목적을 달성하기 위해서 본 연구에서는 로버스트 설계방법을 콘크리트 배합설계에 적용했다. 사례분석에서는 양생온도와 작업지연 등 외부영향요인과 함께 콘크리트 성분의 조합을 적용하여 콘크리트 실내 테스트를 실시했다. 실험결과 로버스트 설계방법을 적용할 경우 외부영향요인이 주어 졌을 때 가장 효과적으로 대응을 할 수 있는 콘크리트 배합설계를 선정할 수 있다는 것을 알 수 있었다.

전주시 공동주택 지하주차장의 실내환경 개선에 관한 연구 (A Study on the Improvement of Indoor Environment in the Underground Parking Lot of Apartments in Jeonju City)

  • 정재연;정인수;포위
    • 한국농촌건축학회논문집
    • /
    • 제22권1호
    • /
    • pp.1-12
    • /
    • 2020
  • The main purpose of the research is to prevent residents who are using underground parking lot from being exposed to pollusion, and to allow them to enjoy clean indoor environment. The study subject for the research are underground parking lots in 20 different apartments, 4 of them were constructed before 2000, 10 were constructed from 2000-2010, and the rest were constructed after 2010. By analyzing the air quality in these underground parking lots, we found out that O3, NO2, CO, PM10, Radon in all parking lots were not excessive compared to the standard limit. TVOC rate was measured with the value in between 312 ~ 2,137㎍/m3, with CO2 value in between 193~1,824 ppm, and HCHO with the value in between 0.01~1.52ppm. The lightning system in underground parking lots in apartments constructed before 2000 were using manual light control system, while automatic light control system was used in all apartments constructed after 2000, and the brightness of parking lots in apartments constructed before 2000 was quite low. The apartments constructed after 2000 are performing cleaning and ventilation due to management agreement, while the apartments constructed before 2000 are not performing regular cleaning and there was no mechanical ventilation system installed. The difference of indoor air quality was significant seasonally, daily, and yearly (year of construction), while illuminance was significantly different yearly.

포스트 코로나 시대의 대학교 주변 원룸형 주택에 대한 실내 공기질 분석 및 위해성 평가 (An Analysis of Indoor Air Quality and Risk Assessment for One-room Housing around the University in the Post-Corona Era)

  • 포위;정재연;정인수
    • 한국농촌건축학회논문집
    • /
    • 제24권3호
    • /
    • pp.23-30
    • /
    • 2022
  • In this study, in order to grasp the current situation of indoor environmental pollution and indoor ventilation in one-room around the university in the post-corona era, we analyzed the experimental data and conducted a questionnaire survey on university students. By analyzing the content, the effects of formaldehyde, dust and other pollution on the human body, which are usually not easily detectable, are digitized and more easily taken into account. Among the experimental results, the concentration of VOC and HCHO, gas pollutants among indoor pollutants, exceeded the recommended criteria of the Ministry of Environment in most studio apartments. Overall, the average CO2 concentration was lower than the Ministry of Environment's maintenance standard (1000ppm), but it was relatively high in summer and winter, and it is believed to be caused by cooling and heating in an enclosed space. The levels of PM2.5 and PM10, particulate pollutants, increased in November and December, and it is believed that ventilation defects due to degradation in external temperature. There was no clear difference between the two types, and there was a very high correlation between PM2.5 and PM10, HCHO and VOC. It was found that temperature was closely correlated with all sources except CO2, and humidity was closely correlated with all sources except PM2.5 and PM10. Health risk assessment was conducted for formaldehyde. The average ECR of studio R2 in May was 3.91E-4, and the ECR figure in September was 3.65E-4, which was very high compared to other residential spaces. The R2 level was calculated as 4 people per 10,000 people in the lifetime risk of cancer of residents, exceeding the allowable risk. R8 also showed higher ECR results than other spaces after R2, especially in October, 2.01E-4, six times higher than R7 measured in October, and 1.87E-4 in July, four times higher than R9.