• 제목/요약/키워드: Indoor Air

검색결과 2,352건 처리시간 0.024초

충남지역 미적용 다중이용시설의 실내공기질에 관한 연구 (A Study of Indoor Air Quality of Public Facilities in Chung-Nam Area)

  • 홍성철;조혜미;조태진;이치원;정용택;손부순
    • 환경위생공학
    • /
    • 제23권2호
    • /
    • pp.35-45
    • /
    • 2008
  • In order to recommend criteria for the administration law on indoor air quality, this study was conducted to examine the distribution and the concentration of indoor air pollutants ($PM_{10},\;CO_2$, CO, HCHO, TBC, $NO_2$, Rn, VOCs, asbestos, $O_3$) in public facilities in the Chung-Nam area. The concentrations of indoor air pollutants were obtained from sixty seven public facilities such as a cinema, an office, a restaurant, a theater and an academy. This study was performed from August to December, 2005. The results of this study showed that the concentrations of indoor air pollutants such as $PM_{10},\;CO_2$, CO, HCHO, TBC, Rn and $O_3$ were less than the recommended limits. However, the average concentration of VOCs was $521.73{\mu}g/m^3$ (GM : $221.69{\mu}g/m^3$), which was higher than the recommended limit of $400{\mu}g/m^3$. Moreover, the average concentration of $NO_2$ was 345.66ppb (GM : 69.95ppb), which was higher than the recommended limit of 50 ppb. The correlation between the concentrations of indoor air pollutants and the type of facilities with respect to $CO_2$, TBC and Rn was statistically low (p<0.05). However, the correlation was high in terms of the CO and $O_3$ concentrations (p<0.01). No relationship between the indoor air pollutants and the type of facilities was observed for $PM_{10}$, VOCs and $NO_2$. The year of construction was compared to the concentrations of indoor air pollutants. Specifically, when the construction date was less than 3 years, the HCHO, VOCs and TBC concentrations were $44.75{\mu}g/m^3,\;555.07{\mu}g/m^3$ and $337.79CFU/m^3$, respectively. These concentrations were $120{\mu}g/m^3$ and $211.84CFU/m^3$ higher for VOCs and TBC than the concentrations obtained from the facilities more than 3 years. However, the concentration of HCHO was similar between the facilities older and younger than 3 years of age. Year, temperature, humidity and indoor air pollutant correlation analyses showed that temperature and humidity, temperature and TBC, temperature and $O_3,\;PM_{10}$ and $NO_2$, HCHO and VOCs, $CO_2$ and Rn had positive relationships. However temperature and Rn, humidity and $CO_2,\;CO_2$ and $O_3,\;O_3$ and Rn had negative relationships. Accordingly, it will be necessary to manage the factors affecting indoor air quality so that the residents can have a more comfortable and healthier living environment. Ultimately, the results of this study are expected to be utilized as baseline data.

이산화티탄 광촉매 졸(sol)의 실내환경 코팅에 의한 실내공기질 개선 (Improvement of Indoor Air Quality by Coating of Indoor Materials of $TiO_2$ Photocatalyst Sol)

  • 양원호;김대원;정문호;양진섭;박기선
    • 한국환경보건학회지
    • /
    • 제30권2호
    • /
    • pp.92-97
    • /
    • 2004
  • Three methods for VOCs emissions control in indoor air are reduction at the source, ventilation between indoor and outdoor, and removal. The best alternative should be to replace highly emitting sources with sources having low emissions, but the pertinent information on VOCs is not always available from manufactures. Other ways of improving indoor air quality are needed. It is to increase the outside fresh-air flow to dilute the pollutants, but this method would generally provide only a dilution effect without destruction in residence. An ideal alternative to existing technologies would be a chemical oxidation process able to treat large volumes of slightly contaminated air at normal temperature without additional oxidant such as ozone generator and ion generator. Photocatalytic oxidation(PCO) represents such a process. It is characterized by a surface reaction assisted by light radiation inducing the formation of superoxide, hydroperoxide anions, or hydroxyl radicals, which are powerful oxidants. In comparison with other VOCs removal methods, PCO offers several advantages. The purpose of this study was to explore the possibilities for photocatalytic purification of slightly contaminated indoor air by using visible light such as flurescent visible light(FVL). In this study, a PCO of relatively concentrated benzene using common FVL lamps was investigated as batch type and total volatile organic compounds(TVOCs) using a common FVL lamp and penetrated sun light over window. The results of this study shown the possibility of TiO$_2$ photocatalyst application in the area of indoor air quality control.

농촌지역 노후주택의 실내공기환경 실태분석 연구 (An Analysis on the Actual Condition of Indoor Air Quality in Rural House)

  • 박로운;조숙영;김상범
    • 한국농촌건축학회논문집
    • /
    • 제22권2호
    • /
    • pp.9-17
    • /
    • 2020
  • The ratio of the deterioration housing in rural area was 29.6%, but it was 18.3% in urban area based on a 2018 survey. In consideration of the point, this study aims to analyze the actual condition of indoor air quality in rural houses to provide basic data for improving the indoor air environment. It was investigated 15housings of Hongseong-gun, Chungchengnam-do. To investigate the correlation between indoor air quality and housing type, both the field survey of housing type and precision diagnosis of concentration of indoor air pollutants such as HCHO, TVOC, Fine dust(PM-10, PM-2.5), CO2, Radon. The results of this study are as follows. First, according to the average value of each element of rural old housing, the construction year was distributed in 1939~2004, and 12households(80%) living in houses older than 30years have passed for about 46years. As for the housing area, more than 12houses(80%) of 60㎡ or more and 3 houses (20%) of less than 60㎡ were often living in relatively small-scale housing. Second, as a result of measuring indoor air pollutants in rural houses, substances exceeding the standard values were found in HCHO, TVOC, CO2. Third, in the case of Fine dust and Radon, none of such factors were exceeded the standard. Fourth, there was no significant difference in indoor air quality depending on housing type in rural houses. This paper is expected to contribute to the regional development projects and effective implementation of rural policies.

공기청정기의 일부 실내공기 오염물질 제거효율에 관한 연구 (Efficiency of Removal for Indoor air pollutants by Air Cleaners in the Indoor Environments)

  • 이태형;김윤신;홍승철;이철민;김종철;전형진;김중호
    • 한국환경과학회지
    • /
    • 제14권5호
    • /
    • pp.491-497
    • /
    • 2005
  • In this study, we investigated $PM_{10},\;NO_2$, and l-hydroxypyrene(1-OHP) in urine at indoor environments which are 35 houses and 20 hospitals for using air cleaner and non-using air cleaner in Seoul metropolitan area and Kyoung-gi province from April, 2003 to February, 2004. Moreover, we examined effect of improvement for indoor air quality and health effect by concentration of 1-OHP also we investigated removal efficiency by air cleaner for $PM_{10},\;NO_2$, and 1-OHP that were 28.5\%,\;27.4\%,\;and\;42.1\%$ respectively. Concentration of$PM_{10},\;NO_2$, and 1-OHP were $19.02\pm18.14{\mu}g/m^3,\;8.66\pm3.06ppb,\;and\;0.19\pm0.18{\mu}g/g$, creatinine when air cleaner was no worked. The concentration for $PM_{10},\;NO_2$. and 1-OHP were $13.60\pm10.79{\mu}g/m^3,\; 6.29\pm2.71ppb,\;and\;0.11\pm0.10{\mu}g/g$ creatinine, respectively. It was significant statistically. Therefore, it is considered using the air cleaner to remove the partial pollutants in indoor environment and is positive effect for health.

분산주성분 분석을 이용한 실내환경 중 PM-10 오염의 패턴분류 (Pattern Classification of PM -10 in the Indoor Environment Using Disjoint Principal Component Analysis)

  • 남보현;황인조;김동술
    • 한국대기환경학회지
    • /
    • 제18권1호
    • /
    • pp.25-37
    • /
    • 2002
  • The purpose of the study was to survey the distribution patterns of inorganic elements of PM-10 in the various indoor environments and analyze the pollution patterns of aerosol in various places of indoor environment using a pattern recognition method based on cluster analysis and disjoint principal component analysis. A total of 40 samples in the indoor had been collected using mini-vol portable samplers. These samples were analyzed for their 19 bulk inorganic compounds such as B, Na, Mg, Al, K, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, As, Se, Cd, Ba, Ce, and Pb by using an ICP-MS. By applying a disjoint principal component analysis, four patterns of the indoor air pollutions were distinguished. The first pattern was identified as a group with high concentrations of PM-10, Na, Mg, and Ca. The second pattern was identified as a group with high concentrations B, Mg, At, Ca, Fe, Cu, and Ba. The third pattern was a group of sites with high concentrations of K, Zn. Cd. The fourth pattern was a group with low concentrations PM-10 and all inorganic elements. This methodology was found to be helpful enough to set the criteria standard of indoor air quality, corresponding pollutants, and classification of indoor environment categories when making an indoor air quality law.

외국식물의 배치변화에 따른 폼알데하이드와 VOCs 농도저감에 관한 연구 (A Study on the Reduction of Formaldehyde and VOCs by Positions of Foreign Plants)

  • 송정은;김용식;손장열
    • KIEAE Journal
    • /
    • 제8권2호
    • /
    • pp.53-58
    • /
    • 2008
  • With architectural technology, a building has been a far dense and close. So the thermal environment of the building has become pleasant, but the quality of indoor air has been degraded. Using synthetic products for construction materials and furniture indoors escalates the concentration of volatile organic compounds(VOCs) at indoor air, threatening the health of the residents. To reduce the concentration of volatile organic compounds at indoor air, many methods are designed, and of late, concern has been increased about the effect of air purification using air purifying plants. Field measurements were performed using Aglaonema brevispathum, Pachira aquatica and Ficus benjamiana, which were verified as air-purifying plants by NASA. The effect of reducing the concentration of air contaminants by plant studied in a full scale mock-up model. The variations of concentration of Benzene, Toluene, Ethylbenzene and Formaldehyde were monitored. In most cases, the effect was excellent in Toluene and formaldehyde in summer.

Particle size distributions and concentrations above radiators in indoor environments: Exploratory results from Xi'an, China

  • Chen, Xi;Li, Angui
    • Environmental Engineering Research
    • /
    • 제20권3호
    • /
    • pp.237-245
    • /
    • 2015
  • Particulate matter in indoor environments has caused public concerns in recent years. The objective of this research is to explore the influence of radiators on particle size distributions and concentrations. The particle size distributions as well as concentrations above radiators and in the adjacent indoor air are monitored in forty-two indoor environments in Xi'an, China. The temperatures, relative humidity and air velocities are also measured. The particle size distributions above radiators at ten locations are analyzed. The results show that the functional difference of indoor environments has little impact on the particle size distributions above radiators. Then the effects of the environmental parameters (particle concentrations in the adjacent indoor air, temperatures, relative humidities and air velocities) on particle concentrations above radiators are assessed by applying multiple linear regression analysis. Three multiple linear regression models are established to predict the concentrations of $PM_{10}$, $PM_{2.5}$ and $PM_1$ above radiators.

Chemical pollution of indoor air in Japan

  • Takehiko, Ogawa
    • 대한위생학회:학술대회논문집
    • /
    • 대한위생학회 2000년도 국제 학술 심포지움 및 총회
    • /
    • pp.1-21
    • /
    • 2000
  • Recently, indoor air pollution from chemical compounds has been attracting attention. Sick-house syndrome and hypersensitivity to chemical compounds are also being recognized as health problems. In this presentation, the situation of indoor air pollution by chemical compounds in Japan will be explained.

  • PDF

환기량 변화에 따른 신축공동주택의 실내공기질 개선효과 검토 (The Effect on Indoor Air Quality Improvement by Ventilation Rate in Newly Built Apartment)

  • 최석용;김상희;이정재
    • 설비공학논문집
    • /
    • 제18권8호
    • /
    • pp.649-655
    • /
    • 2006
  • The recent indoor air quality problem in a newly-built apartment house is resulted from the improvement of airtightness performance and the use of the building material contained harmful chemical substances. As a result, these cause indoor air quality gradually to become worse and the harmful effect on occupant health called Sick House Syndrome. The most effective solution to improve the indoor air quality is to encourage the use of green building material. However, if the house is built with general building material, ventilation with outdoor air is alternative to dilute the pollutant concentration. The purpose of this re-search is to find optimum ventilation time in a newly-built apartment house at which the ventilatoris installed. It is found that the HCHO and toluene concentrations are remarkably decreased with the elapse of ventilation time and the concentration reduction rate is increased with increment of air change rate after one hour after operating the ventilator.