• Title/Summary/Keyword: Individual direct shear test

Search Result 3, Processing Time 0.021 seconds

Case Study on the Shear Characteristics of Limestone Joint Surfaces by Direct Shear Tests (직접전단시험에 의한 석회암 자연절리면의 전단특성 분석사례)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.292-304
    • /
    • 2019
  • Limestone joint surfaces with smooth roughness were experimented by means of both the individual direct shear tests based on the KSRM standard test method and the multi-stage direct shear test to apply the stepwise vertical stresses. Changes in the roughness of the joint surfaces before and after the shear tests were examined and the difference between the two kinds of tests mentioned above was analyzed. In both tests, the shear resistance increased as the joint roughness increased and the maximum shear stress required for shearing the joint surface increased as the vertical stress increased. The peak friction angle obtained by the multi-stage direct shear tests was only 63% of that obtained by the individual direct shear tests. In the multi-stage direct shear test, the initial engagement of the concave-convex parts changes frequently during stepwise shearing process, which deforms the original roughness of a joint surface. Accordingly, the individual direct shear test is thought to be more effective when obtaining the friction angle of the rock joint surfaces. Limestone joint surfaces with smooth roughness of JRC value 4~8 were found to have peak friction angle of $47^{\circ}$, residual friction angle of $38^{\circ}$ and cohesion of 37 kPa.

The Influence of Rock Joint Roughness and Normal Stress on Shear Behaviour (거칠기와 수직응력에 따른 암석 절리면의 전단거동)

  • Lee, Myoung-Ho;Kim, Jong-Woo;Chang, Kwang-Taek
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.186-196
    • /
    • 2007
  • In this study, direct shear tests were carried out on the 30 rock joint samples in order to investigate the influence of roughness and normal stress on the shear behaviour. Joint roughness profiles were measured by use of 3D laser profiler, and then the samples were equally classified into three individual groups according to the roughness index of rock joints. Peak shear strength, residual shear strength, shear stiffness, dilation angle of rock joints were investigated in condition of five different constant normal load. Peak shear strength was increased as roughness index was increased, and the influence of roughness on strength was found to be more considerable in case of lower normal stress condition. Residual shear strength and shear stiffness were increased as roughness index and normal stress were increased. Finally dilation angle was decreased as normal stress was increased, but it was increased as roughness index was increased in the same normal stress condition.

A Comparison of Rheological Measurement Methods of Instant Cooked Rice by a Texture Analyzer (텍스처 분석기를 활용한 즉석밥 물성 측정 방법의 상호 비교)

  • Kim, Heesu;Oh, Im Kyung;Yang, Seonkyeong;Lee, Suyong
    • Food Engineering Progress
    • /
    • v.22 no.4
    • /
    • pp.381-385
    • /
    • 2018
  • Various rheological methods to measure the hardness of instant cooked rice by a texture analyzer were investigated and compared. Specifically, instant white rice samples with a wide range of hardness were subjected to four different rheological tests with disk, cylinder, rod, and cone probe whose results were inter-correlated. All the measurements demonstrated that the hardness of instant rice was reduced with increasing moisture content and showed negatively linear relationships. Out of the four tests applied in this study, the highest coefficient of correlation ($R^2=0.9268$) was observed distinctly in the cone probe test, where both compressive and shear forces can be applied to deform individual rice grains. However, the cylinder probe test had the lowest coefficient of correlation ($R^2=0.7247$) because it may be ineffective in causing direct deformation of individual rice grains. Furthermore, when the hardness values (N) were converted to stress (Pa), highly linear correlations ($R^2{\approx}0.99$) were observed between the tests with similar probe geometry and force application.