• Title/Summary/Keyword: Indium-tin oxide

Search Result 972, Processing Time 0.027 seconds

2-Wavelength Organic Light-Emitting Diodes Using Bebq2 Selectively Doped with (pq)2Ir(acac) (Bebq2에 (pq)2Ir(acac)가 선택 도핑된 2-파장 유기발광다이오드)

  • Kim, Min-Young;Ji, Hyun-Jin;Jang, Ji-Geun
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.212-215
    • /
    • 2011
  • New organic light-emitting diodes with structure of indium-tin-oxide[ITO]/N,N'-diphenyl-N, N'-bis-[4-(phenyl-m-tolvlamino)-phenyl]-biphenyl-4,4'-diamine[DNTPD]/1,1-bis-(di-4-poly-aminophenyl) cyclohexane[TAPC]/bis(10-hydroxy-benzo(h)quinolinato)beryllium[Bebq2]/Bebq2:iridium(III)bis(2-phenylquinoline-N,C2')acetylacetonate[(pq)2Ir(acac)]/ET-137[electron transport material from SFC Co]/LiF/Al using the selective doping of 5%-(pq)2Ir(acac) in a single Bebq2 host in the two wavelength (green, orange) emitter formation were proposed and characterized. In the experiments, with a 300${\AA}$-thick undoped emitter of Bebq2, two kinds of devices with the doped emitter thicknesses of 20${\AA}$ and 40${\AA}$ in the Bebq2:(pq)2Ir(acac) were fabricated. The device with a 20${\AA}$-thick doped emitter is referred to as "D-1" and the device with a 4${\AA}$-thick doped emitter is referred to as "D-2". Under an applied voltage of 9V, the luminance of D-1 and D-2 were 7780 $cd/m^2$ and 6620 $cd/m^2$, respectively. The electroluminescent spectrum of each fabricated device showed peak emissions at the same two wavelengths: 508 nm and 596 nm. However, the relative intensity of 596 nm to 508 nm at those wavelengths was higher in the D-2 than in the D-1. The D-1 and D-2 devices showed maximum current efficiencies of 5.2 cd/A and 6.0 cd/A, and color coordinates of (0.31, 0.50) and (0.37, 0.48) on the Commission Internationale de I'Eclairage[CIE] chart, respectively.

Synthesis and Characterization of Novel Light-Emitting Copolymers with Electron-Withdrawing Substituents

  • Jin, Sung-Ho;Koo, Dae-Sung;Hwang, Chan-Koo;Do, Jung-Yun;Kim, Young-Inn;Gal, Yeong-Soon;Lee, Jae-Wook;Hwang, Jin-Taek
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.114-119
    • /
    • 2005
  • We synthesized two new series of alternating copolymers, poly[bis(2-(4-phenylenevinylene)-2-cyanoethenyl)-9,9-dihexyl-9H-fluoren-2,7-yl-alt-1,4-phenylene](Polymer-I)and poly[bis(2-(4-phenylenevinylene)-2­cyanoethenyl)-9,9-dihexyl-9H-fluoren-2,7-yl-alt-2,7-(9,9-dihexylfluorene)](Polymer-II), via the Suzuki coupling reaction, for use in light-emitting diodes (LEDs). Defect-free uniformly thin films of these polymers were found to be easily formed on indium-tin oxide (ITO) coated glass substrates. Multi-layer LEDs with ITO/PEDOT/Polymer/ LiF/Al configurations with or without an $Alq_3$ electron transport layer were fabricated with these polymers. The maximum EL emissions of Polymer-I and Polymer-II with an $Alq_3/LiF/Al$ cathode were observed at 516 and 533 nm, respectively. The maximum brightness and external luminance efficiency of the devices fabricated with the EL polymers were found to be $411 cd/m^2$ and 0.16 cd/A, respectively.

Syntheses of Improved Polymer/Organic Materials for Electroluminescence(EL) Device and Electro-Optical Characteristics(Ⅱ) Properties of EL Device using Squarylium Dye as Emitting Material (고기능 EL소자용 고분자/유기 재료의 합성 및 전기 광학적 특성(Ⅱ) Squarylium 색소를 이용한 EL소자의 특성)

  • Kim, Sung Hoon;Bae, Jin Seok;Hwang, Seok Hwan;Park, Lee Soon
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.3
    • /
    • pp.144-149
    • /
    • 1997
  • Organic electroluminescence devices(ELD) were fabricated using by molecularly doped method with N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine(TPD) as a hole transport agent, squarylium dye as an emitting agent, and side chain liquid crystalline polymer(MCH) as matrix for TPD. An indium-tin-oxide(ITO) coated glass and an Mg electrode were used as the hole and the electron injecting electrode, respectively. The highest stability of ELD was obtained by spin coating method using dichloroethane as a solvent at a polymer/TPD concentration of 0.005 wt%. For the EL cell with ITO/polymer-TPD/SQ dye/Mg structure, we achieved light red luminescence at a current of 102 mA/$cm^2$ with an applied voltage of 23 V.

  • PDF

Effect of few-walled carbon nanotube crystallinity on electron field emission property

  • Jeong, Hae-Deuk;Lee, Jong-Hyeok;Lee, Byung-Gap;Jeong, Hee-Jin;Lee, Geon-Woong;Bang, Dae-Suk;Cho, Dong-Hwan;Park, Young-Bin;Jhee, Kwang-Hwan
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.207-217
    • /
    • 2011
  • We discuss the influence of few-walled carbon nanotubes (FWCNTs) treated with nitric acid and/or sulfuric acid on field emission characteristics. FWCNTs/tetraethyl orthosilicate (TEOS) thin film field emitters were fabricated by a spray method using FWCNTs/TEOS sol one-component solution onto indium tin oxide (ITO) glass. After thermal curing, they were found tightly adhered to the ITO glass, and after an activation process by a taping method, numerous FWCNTs were aligned preferentially in the vertical direction. Pristine FWCNT/TEOS-based field emitters revealed higher current density, lower turn-on field, and a higher field enhancement factor than the oxidized FWCNTs-based field emitters. However, the unstable dispersion of pristine FWCNT in TEOS/N,N-dimethylformamide solution was not applicable to the field emitter fabrication using a spray method. Although the field emitter of nitric acid-treated FWCNT showed slightly lower field emission characteristics, this could be improved by the introduction of metal nanoparticles or resistive layer coating. Thus, we can conclude that our spray method using nitric acid-treated FWCNT could be useful for fabricating a field emitter and offers several advantages compared to previously reported techniques such as chemical vapor deposition and screen printing.

Use of Self Assembled Monolayer in the Cathode/Organic Interface of Organic Light Emitting Devices for Enhancement of Electron Injection

  • Manna, U.;Kim, H.M.;Gowtham, M.;Yi, J.;Sohn, Sun-young;Jung, Dong-Geun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1343-1346
    • /
    • 2005
  • Self assembled monolayers (SAM) are generally used at the anode/organic interface to enhance the carrier injection in organic light emitting devices, which improves the electroluminescence performance of organic devices. This paper reports the use of SAM of 1-decanethiol (H-S(CH2)9CH3) at the cathode/organic interface to enhance the electron injection process for organic light emitting devices. Aluminum (Al), tris-(8-hydroxyquionoline) aluminum (Alq3), N,N'-diphenyl-N,N'-bis(3 -methylphenyl)-1,1'- diphenyl-4,4'-diamine (TPD) and indium-tin-oxide (ITO) were used as bottom cathode, an emitting layer (EML), a hole-transporting layer (HTL) and a top anode, respectively. The results of the capacitancevoltage (C-V), current density -voltage (J-V) and brightness-voltage (B-V), luminance and quantum efficiency measurements show a considerable improvement of the device performance. The dipole moment associated with the SAM layer decreases the electron schottky barrier between the Al and the organic interface, which enhances the electron injection into the organic layer from Al cathode and a considerable improvement of the device performance is observed. The turn-on voltage of the fabricated device with SAM layer was reduced by 6V, the brightness of the device was increased by 5 times and the external quantum efficiency is increased by 0.051%.

  • PDF

Gas Cluster ion Source for Etching and Smoothing of Solid Surfaces (고체 표면 식각 및 평탄화를 위한 가스 클러스터 이온원 개발)

  • 송재훈;최덕균;최원국
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.232-235
    • /
    • 2002
  • An 150 kV gas cluster ion accelerator was fabricated and assessed. The change of surface morphology and surface roughness were examined by an atom force microscope (AFM) after irradiation of $CO_2$ gas clusters on Si (100) surfaces at the acceleration voltages of 50 kV. The density of hillocks induced by cluster ion impact was gradually increased with the dosage up to 5$\times$10$^{11}$ ions/$\textrm{cm}^2$. At the boundary of the ion dosage of 10$^{12}$ ions/$\textrm{cm}^2$, the density of the induced hillocks was decreased and RMS (root mean square) surface roughness was not deteriorated further. At the dosage of 5x10$^{13}$ ions/$\textrm{cm}^2$, the induced hillocks completely disappeared and the surface became very flat. In addition, the irradiated region was sputtered. $CO_2$ cluster ions are irradiated at the acceleration voltage of 25 kV to remove hillocks on indium tin oxide (ITO) surface and thus to attain highly smooth surfaces. $CO_2$ monomer ions are also bombarded on the ITO surface at the same acceleration voltage to compare sputtering phenomena. From the AFM results, the irradiation of monomer ions make the hillocks sharper and the surfaces rougher On the other hand, the irradiation of $CO_2$ cluster ions reduces the hight of hillocks and planarize the ITO surfaces. From the experiment of isolated cluster ion impact on the Si surfaces, the induced hillocks m high had the surfaces embossed at the lower ion dosages. The surface roughness was slightly increased with the hillock density and the ion dosage. At higher than a critical ion dosage, the induced hillocks were sputtered and the sputtered particles migrated in order to fill valleys among the hillocks. After prolonged irradiation of cluster ions, the irradiated region was very flat and etched.

  • PDF

Electrical properties of layered $BaTiO_3$ thin film (적층구조 $BaTiO_3$ 박막의 전기적 특성)

  • 송만호;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.181-187
    • /
    • 1997
  • The layered BaTiO3 thin films with a high dielectric constant of polycrystalline BaTiO3 and a good in-sulating property of amorphous BaTiO3 were prepared. And their electrical properties were characterized with stacking methods. The BaTiO3 thin films were prepared by rf-magnetron sputtering technique using a ceramic target on Indium-doped Tin oxide coated glasses. A new stacking method resulted in higher dielec-tric constant, capacitance per unit area, and breakdown strength than those prepared by a conventional stacking method; the new method continuously decrease the substrate temperature after initial deposition of a polycrystalline BaTiO3 layer. The observed high dielectric constant could be explained only by a mul-tilayered amorphous/microcrystalline/polycrystalline structure, which was confirmed indirectly by AES depth profile.

  • PDF

Influence of Magnetic Field Near the Substrate on Characteristics of ITO Film Deposited by RF Sputtering Method (기판 부근의 자기장이 RF 스퍼터링법으로 증착된 ITO 박막의 특성에 미치는 영향)

  • Kim, Hyun-Soo;Jang, Ho-Won;Kang, Jong-Yoon;Kim, Jin-Sang;Yoon, Suk-Jin;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.563-568
    • /
    • 2012
  • Indium tin oxide (ITO) films were prepared using radio frequency (RF) magnetron sputtering method, magnets were equipped near the target in the sputter to bring the plasma near the target. The effect of magnetic field that brings the plasma near the substrate was compared with that of substrate heating. The effect of substrate heating on the grain size of the ITO thin film was larger than that of the magnetic field. However, the grain size of the ITO thin film was larger when the magnetic field was applied near the substrate during the sputtering process than when the substrate was not heated and the magnetic field was not applied. If stronger magnetic field is applied near the substrate during sputtering, it can be expected that the ITO thin film with good electrical conductivity and high transparency is obtained at low substrate temperature. When magnetic field of 90 Gauss was applied near the substrate during sputtering, the mobility of the ITO thin film increased from 15.2 $cm^2/V.s$ to 23.3 $cm^2/V.s$, whereas the sheet resistivity decreased from 7.68 ${\Omega}{\cdot}cm$ to 5.11 ${\Omega}{\cdot}cm$.

Property change of organic light-emitting diodes due to a SAM treatment of the ITO surface (ITO 표면의 SAM형 습식 개질에 의한 유기 발광 소자의 특성 변화)

  • Na, Su-Hwan;Joo, Hyun-Woo;An, Hui-Chul;Kim, Tae-Wan;Song, Min-Jong;Lee, Ho-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.314-315
    • /
    • 2008
  • We have studied a property change of organic light-emitting diodes (OLED)s due to a surface reformation of indium-tin-oxide(ITO) substrate. An ITO is widely used as a transparent electrode in light-emitting diodes, and the OLEDs device performance is sensitive to the surface properties of the ITO. The ITO surface reformation could reduce the Schottky barrier at the ITO/organic interface and increase the adhesion of the organic layer onto the electrode. We have studied the characteristics of OLEDs with a treatment by a wet processing of the ITO substrate. The self-assembled monolayer(SAM) was used for wet processing. The characteristics of OLEDs were improved by SAM treatment of an ITO in this work. The OLEDs with a structure of ITO/TPD(50nm)/$Alq_3$(70nm)/LiF(0.5nm)/Al(100nm) were fabricated, and the surface properties of ITO were investigated by using seneral characterization techniques. Self-assembled monolayer introduced at the anode/organic interface gave an improvement in turn-on voltage, luminance and external quantum efficiency compared to the device without the SAM layer. SAM-treatment time of the ITO substrate was made to be 0/10/15/20/25min. The current efficiency of the device with 15min. treated SAM layer was increased by 3 times and the external quantum efficiency by 2.6 times.

  • PDF

A Study on Adhesion and Electro-optical Properties of ITO Films deposited on Flexible PET Substrates with $SiO_2$ Buffer Layer (PET 기판 위해 $SiO_2$ 버퍼층 도입에 따른 IT 박막의 접착 및 전기적.광학적 특성 연구)

  • Kang, Ja-Youn;Kim, Dong-Won;Yun, Hwan-Jun;Park, Kwang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.316-316
    • /
    • 2008
  • Using an evaporation method, $SiO_2$ was deposited as a buffer layer between a flexible PET substrate and a ITO film deposited by DC magnetron sputtering and electro-optical properties were investigated with thickness variance of $SiO_2$ layers. After coating a $SiO_2$ layer and a ITO film, the ITO/$SiO_2$/PET was heated up to $200^{\circ}C$ and the resistivity and the transmittance were measured by hall effect measurement system and UV/VIS/NIR spectroscopy. As a result of depositing a $SiO_2$ buffer layer, the resistivity increased and the transmittance and adhesion property were enhanced than ITO films with no buffer layers and the resistivity was lowered as $SiO_2$ thickness increased from 50 $\AA$ to 100 $\AA$. It was found that the transmittance was independent of annealing temperature variance in $150^{\circ}C{\sim}200^{\circ}C$ and the resistivity decreased as the temperature increased and especially decreasing rate of the resistivity was higher as the buffer layer thickness was thinner. So under optimized depositing of $SiO_2$ buffer layers and post-annealing of ITO/$SiO_2$/PET, ITO films with enhanced adhesion, electro-optical properties can obtained.

  • PDF