• Title/Summary/Keyword: Indium Tin Oxide(ITO)/glass substrate

Search Result 115, Processing Time 0.028 seconds

Fabrication and Characteristics of Thermopneumatic-Actuated Polydimethylsiloxane Micropump (열공압 방식의 polydimethylsiloxane 마이크로 펌프의 제작 및 특성)

  • 김진호;문민철;김주호;김영호;김한수;한경희;김용상
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.342-346
    • /
    • 2004
  • A thermopneumatic-actuated polydimethylsiloxane (PDMS) micropump has been fabricated and their properties are characterized. The diffusers are used as a flow-rectifying element instead of passive check valves. The advantages of the proposed microvalve are of the low cost fabrication process and the transparent optical property using PDMS and indium tin oxide (ITO) glass. We presented the PDMS micropump that is easily integrated with the in-channel PDMS microvalves on the same substrate. The flowrate of the micropump increases linearly as the applied pulse voltage to the ITO heater increases. The fabricated ITO heater resistance is 6.54k$\Omega$. The peak of the flow rate is observed at the duty ratio of 10% for the applied pulse voltage of 55V at 6Hz and the maximum flow rate of 78nl/min is measured.

ITO Thin Film Ablation Using KrF Excimer Laser and its Characteristics

  • Lee, Kyoung-Chel;Lee, Cheon;Le, Yong-Feng
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.20-24
    • /
    • 2000
  • This study aimed to develop ITO(Indium Tim Oxide) tin films ablation with a pulsed type KrF excimer laser required for the electrode patterning application in flat panel display into small geometry on a large substrate are. The threshold fluence for ablating ITO on glass substrate is about 0.1 J/㎠. And its value is much smaller than that using 3 .sup rd/ harmonic Nd:YAG laser. Through the optical microscope measurement the surface color of the ablated ITO is changed into dark brown due to increase of surface roughness and transformation of chemical composition by the laser light. The laser-irradiated regions were all found to be electrically isolating from the original surroundings. The XPS analysis showed that the relative surface concentration of Sn and In was essentially unchanged (In:Sn=5:1)after irradiating the KrF excimer laser. Using Al foil made by 2$\^$nd/ harmonic Na:YAG laser, the various ITO patterning is carried out.

  • PDF

Study of ablation depth control of ITO thin film using a beam shaped femtosecond laser (빔 쉐이핑을 이용한 펨토초 레이저 ITO 박막 가공 깊이 제어에 대한 연구)

  • Kim, Hoon-Young;Yoon, Ji-Wook;Choi, Won-Seok;Stolberg, Klaus;Whang, Kyoung-Hyun;Cho, Sung-Hak
    • Laser Solutions
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Indium tin oxide (ITO) is an important transparent conducting oxide (TCO). ITO films have been widely used as transparent electrodes in optoelectronic devices such as organic light-emitting devices (OLED) because of their high electrical conductivity and high transmission in the visible wavelength. Finding ways to control ITO micromachining depth is important role in the fabrication and assembly of display field. This study presented the depth control of ITO patterns on glass substrate using a femtosecond laser and slit. In the proposed approach, a gaussian beam was transformed into a quasi-flat top beam by slit. In addition, pattern of square type shaped by slit were fabricated on the surfaces of ITO films using femtosecond laser pulse irradiation, under 1030nm, single pulse. Using femtosecond laser and slit, we selectively controlled forming depth and removed the ITO thin films with thickness 145nm on glass substrates. In particular, we studied the effect of pulse number on the ablation of ITO. Clean removal of the ITO layer was observed when the 6 pulse number at $2.8TW/cm^2$. Furthermore, the morphologies and fabricated depth were characterized using a optical microscope, atomic force microscope (AFM), and energy dispersive X-ray spectroscopy (EDS).

  • PDF

Preparation and characterization of ITO Thin Film By Various Substrate heating temperature (기판온도에 따른 ITO 박막의 제조 및 특성)

  • Kim, Sung Jin;Pak, Hunkyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.94.2-94.2
    • /
    • 2010
  • Indium tin oxide (ITO) Thin films were grown on Non-alkarai glass Substrates by PVD method and Subsequently Subjected to ($100^{\circ}C-350^{\circ}C$) Thermal Annealing (TA) In Nitr Oxygen ambinent. Most of all, The effect of TA treatment on the structural properties were studied by using X-Ray diffraction and atomic force microscopy, while optical properties were studied by UV-Transmittance measurements. After TA treatment, the XRD spectra have shown an effective relaxation of the residual compressive stress, As a result, XRD peaks increase of the intensity and narrowing of full width at half-maximun (FWHM). In addtion The microstructure, The surface morphology, the optical transmittance changed and improved, and we investigated The effects of temperature, Time and atmosphere during the TA on the structural and electrical properties of the ITO/glass on TA at $300^{\circ}C$. As a results, the films are highly transparent (80%~89%) in visible region. AFM analysis shows that the films are very smooth with root mean square surface roughness 0.58nm -2.75nm thickness film. It is observed that resistivity of the films drcreases T0 $1.05{\times}10^{-4}{\Omega}cmt$ $6.06{\times}10^{-4}{\Omega}cm$, while mobility increases from $152cm^2/vs$ to $275cm^2/vs$.

  • PDF

Effects of Annealing Condition on Properties of ITO Thin Films Deposited on Soda Lime Glass having Barrier Layers (Barrier층을 갖는 Soda lime glass 기판위에 증착된 ITO박막의 Annealing 조건에 따른 영향)

  • Lee, Jung-Min;Choi, Byung-Hyun;Ji, Mi-Jung;Park, Jung-Ho;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.66-66
    • /
    • 2008
  • Most of the properties of ITO films depend on their substrate nature, deposition techniques and ITO film composition. For the display panel application, it is normally deposited on the glass substrate which has high strain point (>575 degree) and must be deposited at a temperature higher than $250^{\circ}C$ and then annealed at a temperature higher than $300^{\circ}C$ in order to high optical transmittance in the visible region, low reactivity and chemical duration. But the high strain point glass (HSPG) used as FPDs is blocking popularization of large sizes FPDs because it is more expensive than a soda lime glass (SLG). If the SLG could be used as substrate for FPDs, then diffusion of Na ion from the substrate occurs into the ITO films during annealing or heat treatment on manufacturing process and it affects the properties. Therefore proper care should be followed to minimize Na ion diffusion. In this study, we investigate the electrical, optical and structural properties of ITO films deposited on the SLG and the Asahi glass(PD200) substrate by rf magnetron sputtering using a ceramic target ($In_2O_3:SnO_2$, 90:10wt.%). These films were annealed in $N_2$ and air atmosphere at $400^{\circ}C$ for 20min, 1hr, and 2hrs. ITO films deposited on the SLG show a high electrical resistivity and structural defect as compared with those deposited on the PD200 due to the Na ion from the SLG on diffuse to the ITO film by annealing. However these properties can be improved by introducing a barrier layer of $SiO_2$ or $Al_2O_3$ between ITO film and the SLG substrate. The characteristics of films were examined by the 4-point probe, FE-SEM, UV-VIS spectrometer, and X-ray diffraction. SIMS analysis confirmed that barrier layer inhibited Na ion diffusion from the SLG.

  • PDF

The Optical Properties of WO$_3$Thin Films Deposited by RF Magnetron Reactive Sputtering (RF 마그네트론 반응성 스퍼터링법으로 증착된 WO$_3$박막의 광특성)

  • 이동규;최영규;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.339-342
    • /
    • 1997
  • The optical properties of WO$_3$thin films deposited by RF magnetron reactive sputtering were studied. The substrate was an ITO(indium-tin-oxide) glass(100$\Omega$/ ). The optical properties are examined by different deposition conditions. RF power, substrate temperature, $O_2$concentraction. Ar flow rate, working pressure and thickness are 40~60W, 25~30$0^{\circ}C$, 10%, 54~72sccm, 5~20m7orr and 1200~2400$\AA$, respectively. All these films were colorless, light yellow and found to be amorphous in structure by X-ray diffraction analysis. When RF power, substrate temperature, $O_2$concentraction, Ar flow rate, working pressure and thickness are 40W, $25^{\circ}C$, 10%, 72sccm, 20mTorr and 2400$\AA$, respectively the values of transmittance of the WO$_3$thin films in visible region are about 80%.

  • PDF

Photoelectrochemical Characteristics for Cathodic Electrodeposited Cu2O Film on Indium Tin Oxide (음극전착법을 이용한 Cu2O 막의 광전기 화학적 특성)

  • 이은호;정광덕;주오심;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.183-189
    • /
    • 2004
  • Cuprous oxide (Cu$_2$O) thin films are cathodically deposited on Indium Tin Oxide (ITO) substrate. The as-deposited films were heat-treated at 30$0^{\circ}C$ to obtain Cu$_2$O. After the heat treatment, the film was changed from Cu metal into Cu$_2$O phase. The phase, morphology and photocurrent density of the films were dependent on the preparation conditions of deposition time, applied voltage, and the duration of heat treatment. The Cu$_2$O films were characterized by X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). The apparent grain size of the films formed by the normal method was larger than those grown by the pulse method. The CU$_2$O film what was deposited at -0.7 V for 300 sec and then, calcined at 30$0^{\circ}C$ for 1 h showed the predominant photocurrent density of 1048 $\mu$A/$\textrm{cm}^2$. And the stability of Cu$_2$O electrodes were improved with chemically deposited TiO$_2$ thin films on Cu$_2$O.

Electrical and Optical Properties of CdS Films prepared by Electrodeposition (전착법으로 제조한 CdS 막의 전기 및 광학적 특성)

  • 권오균;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.39-44
    • /
    • 1990
  • Polycrystalline CdS films were grown on glass substrate with conducting indium tin oxide(ITO) by electrodeposition. The average size of the plate-shape grains o the CdS films was from 0.3um to 0.05um, and the adhesion to ITO was excellent. The optical band gap of the electrodeposited CdS films was in the range from 2.51eV to 2.68 eV. The optical transmittance was 80% and the electrical resistivity varied from 10$^3$ to 10$\^$5/$\Omega$-cm depending on the deposition condition.

Investigation of dark spots in organic light emitting diodes by using a near-field scanning microwave microscope (마이크로파 근접장 현미경을 이용한 유기 발광소자내 dark spot 연구)

  • Yun, Soon-Il;Yoo, Hyun-Jun;Park, Mi-Hwa;Kim, Song-Hui;Lee, Kie-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.494-497
    • /
    • 2003
  • We report the dark spots in organic light emitting diodes by using a near-field scanning microwave microscope. Devices structure was glass / indium-tin-oxide(ITO) / copper-pthalocyiane(Cu-Pc) / tris-(8-hydroquinoline)aluminum(Alq3) / aluminum(Al). We made artificial dark spots by using a etching technique on a ITO substrate. Near-field scanning microwave microscope images and reflective coefficient of dark spots were measured and compared by the change of various applied voltage changes 0-15V.

  • PDF

The electrical properties of PLZT thin films on ITO coated glass with various post-annealing temperature (ITO 기판에 제작된 PLZT 박막의 후열처리 온도에 따른 전기적 특성평가)

  • Cha, Won-Hyo;Youn, Ji-Eon;Hwang, Dong-Hyun;Lee, Chul-Su;Lee, In-Seok;Sona, Young-Guk
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.28-33
    • /
    • 2008
  • Lanthanum modified lead zirconate titanate ($Pb_{1.1}La_{0.08}Zr_{0.65}Ti_{0.35}O_3$) thin films were fabricated on indium doped tin oxide (ITO)-coated glass substrate by R.F magnetron sputtering method. The thin films were deposited at $500^{\circ}C$ and post-annealed with various temperature ($550-750^{\circ}C$) by rapid thermal annealing technique. The structure and morphology of the films were characterized with X-ray diffraction (XRD) and atomic force microscopy (AFM) respectively. The hysteresis loops and fatigue properties of thin films were measured by precision material analyzer. As the annealing temperature was increased, the remnant polarization value was increased from $10.6{\mu}C/cm^2$ to $31.4{\mu}C/cm^2$, and coercive field was reduced from 79.9 kV/cm to 60.9 kV/cm. As a result of polarization endurance analysis, the remnant polarization of PLZT thin films annealed at $700^{\circ}C$ was decreased 15% after $10^9$ switching cycles using 1MHz square wave form at ${\pm}5V$.