• Title/Summary/Keyword: Indigenous microorganisms

Search Result 90, Processing Time 0.023 seconds

TPH Removal of the Biodegradation Process Using 4 Indigenous Microorganisms for the Diesel Contaminated Soil in a Military Camp (디젤로 오염된 군부대 토양에 대하여 토착미생물 4종을 이용한 생분해법의 TPH 제거 효율 규명)

  • Park, Min-Ho;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.3
    • /
    • pp.49-58
    • /
    • 2012
  • Batch experiments using indigenous and commercialized adventive microorganisms were performed to investigate the feasibility of the biodegradation process for the diesel contaminated soil, which was taken in US Military Camp 'Hialeah', Korea. TPH concentration of the soil was determined as 3,819 mg/kg. Four indigenous microorganisms having high TPH degradation activity were isolated from the soil and by 16S rRNA gene sequence analysis, they were identified as Arthrobacter sp., Burkholderia sp., Cupriavidus sp. and Bacillus sp.. Two kinds of commercialized solutions cultured with adventive microorganisms were also used for the experiments. Various biodegradation conditions such as the amount of microorganism, water content and the temperature were applied to decide the optimal bioavailability condition in the experiments. In the case of soils without additional microorganisms (on the natural attenuation condition), 35% of initial TPH was removed from the soil by inhabitant microorganisms in soil for 30 days. When the commercialized microorganism cultured solutions were added into the soil, their average TPH removal efficiencies were 64%, and 54%, respectively, which were higher than that without additional microorganisms. When indigenous microorganisms isolated from the contaminated soil were added into the soil, TPH removal efficiency increased up to 95% (for Bacillus sp.). According to the calculation of the average biodegradation rates for Bacillus sp., the remediation goal (87% of the removal efficiency: 500 mg/kg) for the soil would reach within 24 days. Results suggested that TPH removal efficiency of biodegradation by injecting indigenous microorganisms is better than those by injecting commercialized adventive microorganisms and only by using the natural attenuation.

Optimization of Explosive Compounds (TNT and RDX) Biodegradation by Indigenous Microorganisms Activated by External Carbon Source (외부탄소원으로 활성화된 토착미생물에 의한 화약물질(TNT and RDX) 분해 최적화)

  • Park, Jieun;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.56-65
    • /
    • 2014
  • Contamination of explosive compounds in the soils of military shooting range may pose risks to human and ecosystems. As shooting ranges are located at remote places, active remediation processes with hardwares and equipments are less practical to implement than natural solutions such as bioremediaton. In this study, a series of experiments was conducted to select a suitable carbon source and to optimize dosing rate for the enhanced bioremediation of explosive compounds in surface soils and sediments of shooting ranges with indigenous microorganisms activated by external carbon source. Treatability study using slurry phase reactors showed that the presence of indigenous microbial community capable of explosive compounds degradation in the shooting range soils, and starch was a more effective carbon source than glucose and acetic acid in the removal of TNT. However, at higher starch/soil ratio, i.e., 2.0, the acute toxicity of the liquid phase increased possibly due to transformation products of TNT. RDX degradation by indigenous microorganisms was also stimulated by the addition of starch but the acute toxicity of the liquid phase decreased with the increase of starch/soil ratio. Taken together, the optimum range of starch/soil ratio for the degradation of explosive compounds without significant increase in acute toxicity was found to be 0.2 of starch/soil.

Monitoring of petroleum hydrocarbon degradative potential of indigenous microorganisms in ozonated soil

  • ;;Rameshwar;Tatavarty
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.152-157
    • /
    • 2003
  • Diesel-contaminated soils were ozonated for different times (0 - 900 min) and incubated for 9 wk to monitor petroleum hydrocarbons (PH)-degradative potential of indigenous microorganisms in the soils. Increased ozonation time decreased not only concentration of PH but also number of microorganisms in the soils. Microorganisms in the ozonated soils increased during 9-wk incubation as monitored by culture- and nonculture-based methods. Higher (1-2 orders of magnitude) cell number was observed by quantitative analysis of soil DNA using probes detecting genes encoding 165 rRNA(rrn), naphthalene dioxygenase (nahA), toluene dioxygenase (todC), and alkane hydroxylase (alkB) than microbial abundance estimated by culture-based methods. Such PH-degraders were relatively a few or under detection limit in 900-min ozonated soil. Further PH-removal observed during the incubation period supported the presence of PH-degraders in ozonated soils. Highest reduction (25.4%) of total PH (TPH) was observed in 180-min ozonated soil white negligible reduction was shown in 900-min ozonated soil during the period, resulting in lowest TPH-concentration in 180-min ozonated soil among the ozonated soils. Microbial community composition in 9-wk incubated soils revealed slight difference between 900-min ozonated and unozonated soils as analyzed by whole cell hybridization using group-specific rRNA-targeted oligonucleotides. Results of this study suggest that appropriate ozonation and subsequent biodegradation by indigenous microorganisms may be a cost-effective and successful remediation strategy for PH-contaminated soils.

  • PDF

A Study on Anaerobic Biodegradation of MTBE and BTEX by Indigenous Microorganisms (토착 미생물을 이용한 MTBE와 BTEX의 혐기성 생분해 연구)

  • Chung, Woo-Jin;Chang, Soon-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.88-94
    • /
    • 2016
  • The simultaneous biodegradation between MTBE (Gasoline additives) and BTEX (Benzene, Toluene, Ethyl-benzene, o-Xylene, m-Xylene, p-Xylene) was achieved within a competitive inter-relationship, with not only electron accepters such as nitrate, sulfate, and iron(III) without oxygen, but also with electron donors such as MTBE and BTEX. Preexisting indigenous microorganisms from a domestic sample of gasoline contaminated soil was used for a lab-scale batch test. The result of the test showed that the biodegradation rate of MTBE decreased when there was co-existing MTBE and BTEX, compared to having just MTBE present. The growth of indigenous microorganisms was not affected in the case of the MTBE treatment, whereas the growth of the microorganisms was decreased in combined MTBE and BTEX sample. This may indicate that an inhibitor related to biodegradation when BTEX and MTBE are mixed will be found. This inhibitor may be found to retard the anaerobic conditions needed for efficient breakdown of these complex carbon chain molecules in-situ. Moreover, it is also possible that an unknown competitive reaction is being imposed on the interactions between MTBE and BTEX dependent on conditions, ratios of mixture, etc.

Characterization of Soil Microorganism from Humus and Indigenous Microorganism Amendments

  • Jan, Umair;Feiwen, Rui;Masood, Jan;Chun, Se Chul
    • Mycobiology
    • /
    • v.48 no.5
    • /
    • pp.392-398
    • /
    • 2020
  • This study was conducted to understand the dynamics of microbial communities of soil microorganisms, and their distribution and abundance in the indigenous microorganisms (IMOs) manipulated from humus collected from the forest near the crop field. The soil microorganisms originated from humus and artificially cultured microbial-based soil amendments were characterized by molecular and biochemical analyses. The bacterial population (2 × 106~13 × 106 CFU/g sample) was approximately 100-fold abundant than the fungal population (2 × 104~8 × 104 CFU/g sample). The 16S rDNA and ITS sequence analyses showed that the bacterial and fungal communities in humus and IMOs were mainly composed of Bacillus and Pseudomonas, and Trichoderma and Aspergillus species, respectively. Some of the bacterial isolates from the humus and IMOs showed strong inhibitory activity against soil-borne pathogenic fungi Fusarium oxysporum and Sclerotinia sclerotiorum. These bacteria also showed the siderophore production activity as well as phosphate solubilizing activity, which are requisite traits for biological control of plant pathogenic fungi. These results suggest that humus and IMOs could be a useful resource for sustainable agriculture.

Alpine Microorganisms: Useful Tools for Low-Temperature Bioremediation

  • Margesin, Rosa
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.281-285
    • /
    • 2007
  • Cold environments, including polar and alpine regions, are colonized by a wide diversity of micro-organisms able to thrive at low temperatures. There is evidence of a wide range of metabolic activities in alpine cold ecosystems. Like polar microorganisms, alpine microorganisms playa key ecological role in their natural habitats for nutrient cycling, litter degradation, and many other processes. A number of studies have demonstrated the capacity of alpine microorganisms to degrade efficiently a wide range of hydrocarbons, including phenol, phenol-related compounds and petroleum hydrocarbons, and the feasibility of low-temperature bioremediation of European alpine soils by stimulating the degradation capacity of indigenous microorganisms has also been shown.

Effects of Pb, Cu, and Cr on Anaerobic Biodegradation of Diesel Compounds by Indigenous Bacteria (혐기성 토착미생물의 디젤 생분해에 대한 Pb, Cu, Cr의 영향)

  • Yoo, Chae-won;Lim, Hyeong-Seok;Park, Jae-woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.15-21
    • /
    • 2015
  • Anaerobic biodegradation of diesel with coexisting heavy metals (Pb) was monitored in batch mode. Two different groups of the indigenous bacteria from a site contaminated with diesel and lead were used in this research: the first group was composed of a single species and the second group was composed of several species. The effect of heavy metals on the microbial population was monitored and confirmed the biodegradation mechanism in each combined contaminant. Growth of the microorganisms in 21 days was observed Diesel > Diesel + Pb > Diesel + Cu > Diesel + Pb + Cu > Diesel + Cr > Diesel + Pb + Cr. Indigenous microorganisms showed the adaptation in the Pb contaminate. Interactive toxic effect using AMES test observed larger synergistic effect than antagonistic in Diesel + Cr and Diesel + Pb + Cr. Therefore, the main effects of diesel biodegradation in the present of heavy metals are likely to exist other factors as well as toxic of heavy metals. This is a necessary part of the future studies.

대수층에서의 자연표류 실험을 통한 염화지방족 탄화수소화합물 오염 지하수의 생물학적 복원 타당성 연구

  • Kim Jin-Uk;Ha Cheol-Yun;Kim Nam-Hui;Hong Gwang-Pyo;Gwon Su-Yeol;An Yeong-Ho;Ha Jun-Su;Park Hu-Won;Kim Yeong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.127-130
    • /
    • 2005
  • The feasibility of stimulating in situ aerobic cometabolic activity of indigenous microorganisms was investigated in a trichloroethene(TCE)-contaminated aquifer, A series of single-well natural drift tests (SWNDT) was conducted by injecting site groundwater amended with a bromide tracer and combinations of toluene, oxygen, nitrate, ethylene and TCE into an existing monitoring well and by sampling the same well over time. Transformation of ethylene, a surrogate of overall TCE transformation activity, was also observed, and its transformation results in the production of ethylene oxide, suggesting that some tolune-oxidizing microorganisms stimulated may express a monooxygenase enzymes. Also in situ transformation of TCE was confirmed by dilution-adjusted data analysis developed in this study. These results indicate that, in this environment, toluene and oxygen additions stimulated the growth and aerobic cometabolic activity of indigenous microorganisms expressing monooxygenase enzymes and that these are responsible for observed toluene utilization and cometabolism of ethylene and TCE. The simple, low-cost field test method provides an effective method for conducting rapid field assessments and pilot testing of aerobic cometabolism of TCE, which has previously hindered application of this technology to groundwater remediation.

  • PDF

PCE, TCE로 오염된 지하수내 미생물 특성 및 분포

  • 권수열;김진욱;박후원;이진우;김영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.158-161
    • /
    • 2004
  • Chlorinated aliphatic hydrocarbons (CAHs) especially perchlorethylene (PCE) and trichlooethylene (TCE) are common groundwater contaminants in Korea. PCE and TCE were often reductively dechiorinated in an aquifer. Several isolates dechlorinate PCE to TCE or cis-1,2 dichloroethylene (c-DCE) were obtained from contaminated and pristine sites in USA and Europe. However in Korea, no information on indigenous microorganism being involved in reductive dechlorination of PCE and TCE is available and different dechlorinating microorganisms might be reside in Korea, since geochemical, and hydrogeological conditions are different, compared to those in the other sites. So we evaluate that: 1) if reductive dechlorinating microorganisms are present in PCE-contaminated site in Korea, 2) if so, what kinds of microorganisms are present; 3) to what extent PCE is reductively dechlorinated. As a results in some PCE-contaminated aquifers in Korea other dechlorinating microorganisms but Dehalococcoides ethenogenes may be responsible for PCE dechlorination. More detailed molecular works are required to evaluate that different dechlorinating microorganisms would reside in Korea.

  • PDF