• Title/Summary/Keyword: Indigenous Chickens

Search Result 32, Processing Time 0.026 seconds

Association between Single Nucleotide Polymorphisms of the Major Histocompatibility Complex Class II Gene and Newcastle Disease Virus Titre and Body Weight in Leung Hang Khao Chickens

  • Molee, A.;Kongroi, K.;Kuadsantia, P.;Poompramun, C.;Likitdecharote, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • The aim of the present study was to investigate the effect of single nucleotide polymorphisms in the major histocompatibility complex (MHC) class II gene on resistance to Newcastle disease virus and body weight of the Thai indigenous chicken, Leung Hang Khao (Gallus gallus domesticus). Blood samples were collected for single nucleotide polymorphism analysis from 485 chickens. Polymerase chain reaction sequencing was used to classify single nucleotide polymorphisms of class II MHC. Body weights were measured at the ages of 3, 4, 5, and 7 months. Titres of Newcastle disease virus at 2 weeks to 7 months were determined and the correlation between body weight and titre was analysed. The association between single nucleotide polymorphisms and body weight and titre were analysed by a generalized linear model. Seven single nucleotide polymorphisms were identified: C125T, A126T, C209G, C242T, A243T, C244T, and A254T. Significant correlations between log titre and body weight were found at 2 and 4 weeks. Associations between single nucleotide polymorphisms and titre were found for C209G and A254T, and between all single nucleotide polymorphisms (except A243T) and body weight. The results showed that class II MHC is associated with both titre of Newcastle disease virus and body weight in Leung Hang Khao chickens. This is of concern because improved growth traits are the main goal of breeding selection. Moreover, the results suggested that MHC has a pleiotropic effect on the titre and growth performance. This mechanism should be investigated in a future study.

Samae Dam chicken: a variety of the Pradu Hang Dam breed revealed from microsatellite genotyping data

  • Nivit Tanglertpaibul;Trifan Budi;Chien Phuoc Tran Nguyen;Worapong Singchat;Wongsathit Wongloet;Nichakorn Kumnan;Piangjai Chalermwong;Anh Huynh Luu;Kantika Noito;Thitipong Panthum;Pish Wattanadilokchatkun;Anuphong Payopat;Natthamon Klinpetch;Aingorn Chaiyes;Kanithaporn Vangnai;Chotika Yokthongwattana;Chomdao Sinthuvanich;Syed Farhan Ahmad;Narongrit Muangmai;Kyudong Han;Mitsuo Nunome;Akihiko Koga;Prateep Duengkae;Sompon Waipanya;Yoichi Matsuda;Kornsorn Srikulnath
    • Animal Bioscience
    • /
    • v.37 no.12
    • /
    • pp.2033-2043
    • /
    • 2024
  • Objective: The remarkable adaptability to the environment, high growth rate, meat with good taste and aroma, and ornamental appearance of the Pradu Hang Dam (PDH) and Samae Dam (SD) chickens make them valuable for improvement of poultry production to enhance food security. However, despite their close phenotypic similarity, distinct classification of PDH and SD chickens remains controversial. Thus, this study aimed to clarify genetic origins and variation between PDH and SD chickens, genetic diversity and structures of PDH and SD chickens. Methods: This study analyzed 5 populations of PDH and 2 populations of SD chickens using 28 microsatellite markers and compared with those of other indigenous and local chicken breeds using Thailand's "The Siam Chicken Bioresource Project" database. Results: Considerably high genetic variability was observed within PDH (370 total alleles; 4.086±0.312 alleles/locus) and SD chickens (179 total alleles; 3.607±0.349 alleles/locus). A partial overlap of gene pools was observed between SD chickens from the Department of Livestock, Uthai Thani (SD1) and PDH chickens, suggesting a potentially close relationship between the two chicken breeds. A gene pool that partially overlapped with that of the red junglefowl was observed in the SD chicken population from the Sanhawat Farm Uthai Thani population (SD2). Distinct subclusters were observed within SD chickens, indicating the possibility that genetic differentiation occurred early in the process of establishment of SD chickens. Conclusion: These findings could offer valuable insights into genetic verification of Thai local chicken breeds and their sustainable conservation and utilization.

Assessment of Population Structure and Genetic Diversity of 15 Chinese Indigenous Chicken Breeds Using Microsatellite Markers

  • Chen, Guohong;Bao, Wenbin;Shu, Jingting;Ji, Congliang;Wang, Minqiang;Eding, Herwin;Muchadeyi, Farai;Weigend, Steffen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.331-339
    • /
    • 2008
  • The genetic structure and diversity of 15 Chinese indigenous chicken breeds was investigated using 29 microsatellite markers. The total number of birds examined was 542, on average 36 birds per breed. A total of 277 alleles (mean number 9.55 alleles per locus, ranging from 2 to 25) was observed. All populations showed high levels of heterozygosity with the lowest estimate of 0.440 for the Gushi chickens, and the highest one of 0.644 observed for Wannan Three-yellow chickens. The global heterozygote deficit across all populations (FIT) amounted to 0.180 (p<0.001). About 16% of the total genetic variability originated from differences between breeds, with all loci contributing significantly to this differentiation. An unrooted consensus tree was constructed using the Neighbour-Joining method and pair-wise distances based on marker estimated kinships. Two main groups were found. The heavy-body type populations grouped together in one cluster while the light-body type populations formed the second cluster. The STRUCTURE software was used to assess genetic clustering of these chicken breeds. Similar to the phylogenetic analysis, the heavy-body type and light-body type populations separated first. Clustering analysis provided an accurate representation of the current genetic relations among the breeds. Remarkably similar breed rankings were obtained with all methods.

A COMPARISON OF THE V4 STRAIN WITH THE CONVENTIONAL F1 AND M STRAIN OF NEWCASTLE DISEASE VACCINE IN RURAL BANGLADESH

  • Biswas, H.R.;Hoque, M.M.;Chowdhury, S.M.Z.H.;Oxley, M.E.;Rahman, M.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.2
    • /
    • pp.231-235
    • /
    • 1996
  • Bangladeshi indigenous chickens of mixed ages vaccinated twice at a three week interval with either conventional vaccines-$F_1$ (ocular) and M (mukteswar, Intramuscular), or heat resistant $V_4$ vaccine administered by either the ocular or oral routes, all showed satisfactory hemagglutination inhibition antibody (HI) responses and protection against Newcastle Disease (NCD) challenge persisting for four months. The antibody response to $F_1$ and M was higher than for $V_4$, which was similar whether administered by the ocular or oral routes. All vaccinated treatments have a significant level of protection compare to the control group (p<0.01). No significant difference (p>0.05) in the protection against controlled challenge with virulent NCD virus was found between vaccinated groups.

A Research Review of Village Chicken Production Constraints and Opportunities in Zimbabwe

  • Mapiye, C.;Mwale, M.;Mupangwa, J.F.;Chimonyo, M.;Foti, R.;Mutenje, M.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1680-1688
    • /
    • 2008
  • Development of village chicken production can be a sustainable way of helping to meet the welfare needs of rural populations and raise their living standards. There is a dearth of information on research conducted to characterize, understand and develop the village chicken production systems in Zimbabwe. This review focuses on constraints, opportunities and research needs for the improvement of village chicken productivity in Zimbabwe. Village chicken production in Zimbabwe is extensive and dominated by indigenous chickens that exhibit remarkable adaptation to local environments. The multitude functions of village chickens, which include the provision of high quality protein meat and eggs, cash through sales and socio-cultural roles, are discussed in detail. Human gender aspects in village chicken production are highlighted. The factors that hamper village chicken productivity are reviewed together with opportunities and research needs. The major constraints include shortage of feed, poor health and housing management. Any improvements in these constraints may lead to sustainable increase in village chicken productivity.

Investigation of PCR-RFLPs within Major Histocompatibility Complex B-G Genes Using Two Restriction Enzymes in Eight Breeds of Chinese Indigenous Chickens

  • Xu, R.F.;Li, K.;Chen, G.H.;Qiang, B.Y.Z.;Mo, D.L.;Fan, B.;Li, C.C.;Yu, M.;Zhu, M.J.;Xiong, T.A.;Liu, Bang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.942-948
    • /
    • 2005
  • New polymorphism of major histocompatibility complex B-G genes was investigated by amplification and digestion of a 401bp fragment including intron 1 and exon 2 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique with two restriction enzymes of Msp I and Tas I in eight breeds of Chinese indigenous chickens and one exotic breed. In the fragment region of the gene, three novel single nucleotide polymorphisms (SNPs) were detected at the two restriction sites. We found the transition of two nucleotides of A294G and T295C occurred at Tas I restriction site, and consequently led to a non-synonymous substitution of asparagine into serine at position 54 within the deduced amino acid sequence of immunoglobulin variable-region-like domain encoded by the exon 2 of B-G gene. It was observed at rare frequency that a single mutation of A294G occurring at the site, also caused an identical substitution of amino acid, asparagine 54-to-serine, to that we described previously. And the transversion of G319C at Msp I site led to a non-synonymous substitution, glutamine 62-to-histidine. The new alleles and allele frequencies identified by the PCR-RFLP method with the two enzymes were characterized, of which the allele A and B frequencies at Msp I and Tas I loci were given disequilibrium distribution either in the eight Chinese local breeds or in the exotic breed. By comparison, allele A at Msp I locus tended to be dominant, while, the allele B at Tas I locus tended to be dominant in all of the breeds analyzed. In Tibetan chickens, the preliminary association analysis revealed that no significant difference was observed between the different genotypes identified at the Msp I and Tas I loci and the laying performance traits, respectively.

Complete mitochondrial genome sequence of Tosa-Jidori sheds light on the origin and evolution of Japanese native chickens

  • Osman, Sayed A.M.;Nishibori, Masahide;Yonezawa, Takahiro
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.941-948
    • /
    • 2021
  • Objective: In Japan, approximately 50 breeds of indigenous domestic chicken, called Japanese native chickens (JNCs), have been developed. JNCs gradually became established based on three major original groups, "Jidori", "Shoukoku", and "Shamo". Tosa-Jidori is a breed of Jidori, and archival records as well as its morphologically primitive characters suggest an ancient origin. Although Jidori is thought to have been introduced from East Asia, a previous study based on mitochondrial D-loop sequences demonstrated that Tosa-Jidori belongs to haplogroup D, which is abundant in Southeast Asia but rare in other regions, and a Southeast Asian origin for Tosa-Jidori was therefore suggested. The relatively small size of the D-loop region offers limited resolution in comparison with mitogenome phylogeny. This study was conducted to determine the phylogenetic position of the Tosa-Jidori breed based on complete mitochondrial D-loop and mitogenome sequences, and to clarify its evolutionary relationships, possible maternal origin and routes of introduction into Japan. Methods: Maximum likelihood and parsimony trees were based on 133 chickens and consisted of 86 mitogenome sequences as well as 47 D-loop sequences. Results: This is the first report of the complete mitogenome not only for the Tosa-Jidori breed, but also for a member of one of the three major original groups of JNCs. Our phylogenetic analysis based on D-loop and mitogenome sequences suggests that Tosa-Jidori individuals characterized in this study belong to the haplogroup D as well as the sub-haplogroup E1. Conclusion: The sub-haplogroup E1 is relatively common in East Asia, and so although the Southeast Asian origin hypothesis cannot be rejected, East Asia is another possible origin of Tosa-Jidori. This study highlights the complicated origin and breeding history of Tosa-Jidori and other JNC breeds.

Comparison on Performance, Carcass Yield and Meat Quality Characteristics of Korean Indigenous Commercial Chicken (토종닭 실용계의 생산성, 도체율 및 육질특성 비교)

  • Kim, Ki-Gon;Cha, Jae-Beom;Kim, Hee-Jin;Choo, Hyo-Jun;Park, Byoungho;Hong, Eui-Chul
    • Korean Journal of Poultry Science
    • /
    • v.48 no.4
    • /
    • pp.277-285
    • /
    • 2021
  • This study was conducted to compare performance, carcass yield, and meat quality of 4 Korean indigenous commercial chickens (Hanhyup 3: G, Sorae 1: V, Woorimatdak 1: S, Woorimatdak 2: W). A total of 384 chickens were divided into 4 treatments with 4 Korean indigenous commercial chickens, 6 repetitions per treatment, and 16 birds per treatment (♀ 8 birds, ♂ 8 birds). For 12 weeks, body weight was significantly higher in G and V breeds than S and W breeds (P<0.01), but body weight gain lower in S breed (P<0.05). Feed conversion ratio was significantly higher in W breed at 8~10 wk of age (P<0.05). There was no significant difference on livability among four treatments. Carcass yield and fresh meat ratio were highest in V breed at 12 wk of age (P<0.05). On breast meat, shear force was lower in G breed (P<0.05), and higher in male than in female (P<0.05). Lightness (L*) of breast meat was higher in female except V breed, and redness (a*) was significantly higher in breed G (P<0.05). Yellowness (b*) of breast meat was higher in G and V breeds, and higher in male than in female except breed G. In conclusion, G and V breeds showed superior performance, and S and W breeds showed superior meat quality.

Genetic diversity and population structure of indigenous chicken of Bangladesh using microsatellite markers

  • Rashid, Muhammad Abdur;Manjula, Prabuddha;Faruque, Shakila;Bhuiyan, A.K. Fazlul Haque;Seo, Dongwon;Alam, Jahangir;Lee, Jun Heon;Bhuiyan, Mohammad Shamsul Alam
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1732-1740
    • /
    • 2020
  • Objective: The objectives of this study were to investigate the genetic diversity, population structure and relatedness among the five chicken populations of Bangladesh using microsatellite markers. Methods: A total of 161 individuals representing 5 chicken populations (non-descript Deshi [ND], naked neck [NN], hilly [HI], Aseel [AS], and red jungle fowl [JF]) were included in this study to investigate genetic diversity measures, population structure, genetic distance and phylogenetic relationships. Genotyping was performed using 16 selected polymorphic microsatellite markers distributed across 10 chromosomes. Results: The average observed and expected heterozygosity, mean number of alleles and polymorphic information content were found to be 0.67±0.01, 0.70±0.01, 10.7 and 0.748, respectively in the studied populations. The estimated overall fixation index across the loci (F), heterozygote deficiency within (FIS) and among (FIT) chicken populations were 0.04±0.02, 0.05 and 0.16, respectively. Analysis of molecular variance analysis revealed 88.07% of the total genetic diversity was accounted for within population variation and the rest 11.93% was incurred with population differentiation (FST). The highest pairwise genetic distance (0.154) was found between ND and AS while the lowest distance was between JF and AS (0.084). Structure analysis depicted that the studied samples can be categorized into four distinct types or varieties (ΔK = 3.74) such as ND, NN, and HI where AS and JF clustered together as an admixed population. The Neighbor-Joining phylogenetic tree and discriminant analysis of principal component also showed close relatedness among three chicken varieties namely AS, HI, and JF. Conclusion: The results reflected that indigenous chicken of Bangladesh still possess rich genetic diversity but weak differentiation among the studied populations. This finding provides some important insight on genetic diversity measures that could support the designing and implementing of future breeding plans for indigenous chickens of Bangladesh.

Supplementation of Indigenous Green Microalga (Parachlorella sp.) to Pre-starter Diet for Broiler Chickens (초기 육계 사료내 토착미세조류(Parachlorella sp.) 첨가에 따른 성장 및 면역반응 변화)

  • An, Su Hyun;Joo, Sang Seok;Lee, Hyo Gun;Kim, Z-Hun;Lee, Chang Soo;Kim, Myunghoo;Kong, Changsu
    • Korean Journal of Poultry Science
    • /
    • v.47 no.1
    • /
    • pp.49-59
    • /
    • 2020
  • The present study determined the effect of dietary cultivated microalgae (Parachlorella sp.) on the growth and immune responses of pre-starter broilers. A total of 320 one-day-old birds (Ross 308) were allocated to 4 treatments with 8 blocks in a randomized complete block design. The four experimental diets consisted of a corn-soybean meal-based control diet, and three diets contained 0.5%, 1.0%, and 1.5% microalgae powder at the expense of cornstarch in the control diet. After feeding the experimental diets for 7 days, the body weight and feed intake of all birds were measured, and 8 birds were randomly selected from each treatment. Peripheral blood mononuclear cells (PBMCs) and serum were harvested for immune profile assessment, including cytokines and cell migration receptors. No differences in growth performance were observed among the treatments. The birds that were fed diets containing graded levels of microalga showed a linear increase in the mRNA expression of cytokine genes in PBMCs, including that of IL2, IL1β, and IL18 (P<0.05). With respect to the chemokine receptor genes in PBMCs, mRNA expression of CCR2, CCR9, and ITGA4 changed quadratically (P<0.05), but that of CCR7 increased linearly (P<0.01). Cytokine protein secretion in blood, including that of IL-1β and IL-6, increased linearly (P<0.01) with an increase in the microalgal content. Overall, the present results show that the indigenous microalgae powder used in this study could stimulate immunity with no detrimental effects on the growth performance of pre-starter broiler chickens.