• Title/Summary/Keyword: Indican

Search Result 8, Processing Time 0.024 seconds

Purification and Characterization of an Indican-hydrolyzing β-glucosidase from Agrobacterium tumefaciens (Agrobacterium tumefaciens 유래 인디칸 분해활성을 갖는 β-glucosidase의 분리와 특성분석)

  • Hwang, Chang-Sun;Lee, Jin-Young;Kim, Geun-Joong
    • KSBB Journal
    • /
    • v.27 no.6
    • /
    • pp.341-346
    • /
    • 2012
  • Indican (indoxyl-${\beta}$-D-glucoside) is a colorless natural compound and can be used as a precursor for the production of indigo. This production step only require an enzyme, ${\beta}$-glucosidase, that readily screened from microbial resource by using selective media supplemented with indican as a sole carbon source. Agrobacterium tumefaciens was well grown in this media and thus presumed to produce a related enzyme. The corresponding gene, encoding a protein with a calculated molecular mass of 51 kDa, was cloned and overexpressed as MBP fusion proteins. The purified enzyme was determined to be a dimer and showed the maximum activity for indican at pH 7.0 and $40^{\circ}C$. The kinetic parameters for indican, Km and Vmax, were determined to be 1.4 mM and 373.8 ${\mu}M/min/mg$, respectively. The conversion yield of indican into indigo using this enzyme was about 1.7-1.8 folds higher than that of previously isolated enzyme from Sinorhizobium meliloti. Additionally, this enzyme was able to hydrolyze various ${\beta}$-1,4 glycoside substrates.

Characteristics of Acid Hydrolysis Indigo Extracted from Indigo(Polygonum tinctorium L.) Leaves (쪽잎 추출 산가수분해 인디고의 특성)

  • Go, In-Hee;Choi, Tae-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.3
    • /
    • pp.57-65
    • /
    • 2016
  • Indigo (Polygonum tinctorium L.) is a typical blue dye which had been used from ancient times. This study was going to shade the complicated traditional methods extracting indigo dye by the fermentation and producing as adsorbate on calcium hydroxide, which says so called as the 'Indigo lime'. Accordingly we were going to make indigo through the hydrolysis of the hot water extractives of indigo leaves simply. During hot-water extraction, ${\beta}$-glucosidase which required hydrolysis of the linkage between indigo and glucose was not activated. To achieve this goal, indican was acid-hydrolyzed to glucose and indigo. The acetic acid, citric acid, hydrochloric acid, and sulfuric acid were used for the hydrolysis of hot water extractives. The hydrolysis conditions of extractives performed in water bath at $80^{\circ}C$ for 120 minutes and in an autoclave for 120 minutes. In the acid hydrolysis of extracted indican by hot water, the indican yields of acetic acid and hydrochloric acid hydrolysis were higher than sulfuric acid in water bath. Also, the indican yield of hydrochloric acid hydrolysis was better than sulfuric acid in autoclave. The hot water extracted indican was confirmed by HPLC analysis and its structure was confirmed by UV-Vis and FT-IR spectroscopy, compared with isolated indigo and commercial synthesized indigo. This improved extraction and hydrolysis methods can be replace the traditional indigo making method.

Process Balance of Natural Indigo Production based on Traditional Niram Method

  • Shin, Younsook;Yoo, Dong Il;Kim, Kangwha
    • Textile Coloration and Finishing
    • /
    • v.24 no.4
    • /
    • pp.253-259
    • /
    • 2012
  • In this work, the natural indigo production process from Polygonum tinctorium was balanced based on the traditional Niram method in Korea. A standard procedure was determined considering the conditions of indican extraction from plant material, the amount of alkali for precipitation, storage of extract, etc. The effect of experimental conditions on the yield of crude dye was investigated. The contents of indigo and indirubin of the crude dyes were analyzed by HPLC. Increase of the amount of crude dye was observed within 1-2.5 days of extraction time. Longer extraction beyond 2.5 days resulted in a slight decrease in the amount of crude dye. There was no consistency in terms of indigo content depending on extraction pH. We found that the storage of extract or harvested plants affected adversely to dye yield and dye quality. Based on the lab scale extraction, large scale extraction was performed for 2-2.5 days in water and 2.0-2.5 g/L of $Ca(OH)_2$ was applied for precipitation of indigo dye. We obtained natural indigo dye containing about 15% of pure indigo in scale-up production using whole plant except root.

Effects of Temperature and Dormancy Breaking on Germination of Newly Developed Rice Varieties (온도 및 휴면타파가 수도신품종의 발아에 미치는 영향)

  • ;Hyun-Ok Choi;Jong-Hoon Lee;Moon-Hee Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.22 no.2
    • /
    • pp.18-22
    • /
    • 1977
  • Germination ability of a japonica and 15 indica$\times$japonica varieties was tested at day/night tempuratures of 25/2$0^{\circ}C$ and 12/12$^{\circ}C$. Germination ability of a japonica variety, "Jinheung" and two indican$\times$japonica varieties. "Suweon #251" and "Suweon #278" was greater than that of other indica$\times$japonica varieties tested. Germination pattern of varieties was made into 4 groups.ieties was made into 4 groups.

  • PDF

Dyeing of Silk by the use of fresh leaves of Indigo plant (쪽 생잎즙액에 의한 견염색에 관한 연구)

  • 정인모
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.1
    • /
    • pp.36-41
    • /
    • 2000
  • The indigo dyeing on silk was carried out by the use of fresh leaves juice of polygonum tinctorium. By means of spectroscopic analysis, it is proved that indoxyl are present in the juicese due to the enzymatic reducing of indican contained in the leaves. In case of fresh leaf dyeing, K/S value of dyed fabric was higher at 25$\^{C}$ than at 35$\^{C}$ of the dyeing temperature, its colour fastness aganist washing, perspiration and ligt ranged from 4 to 5 grade.

  • PDF

Paricalcitol attenuates indoxyl sulfate-induced apoptosis through the inhibition of MAPK, Akt, and NF-κB activation in HK-2 cells

  • Park, Jung Sun;Choi, Hoon In;Bae, Eun Hui;Ma, Seong Kwon;Kim, Soo Wan
    • The Korean journal of internal medicine
    • /
    • v.34 no.1
    • /
    • pp.146-155
    • /
    • 2019
  • Background/Aims: Indoxyl sulfate (IS) is a uremic toxin and an important causative factor in the progression of chronic kidney disease. Recently, paricalcitol (19-nor-1,25-dihydroxyvitamin D2) was shown to exhibit protective effects in kidney injury. Here, we investigated the effects of paricalcitol treatment on IS-induced renal tubular injury. Methods: The fluorescent dye 2',7'-dichlorofluorescein diacetate was used to measure intracellular reactive oxygen species (ROS) following IS administration in human renal proximal tubular epithelial (HK-2) cells. The effects of IS on cell viability were determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and levels of apoptosis-related proteins (Bcl-2-associated protein X [Bax] and B-cell lymphoma 2 [Bcl-2]), nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65, and phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) were determined by semiquantitative immunoblotting. The promoter activity of $NF-{\kappa}B$ was measured by luciferase assays and apoptosis was determined by f low cytometry of cells stained with f luorescein isothiocyanate-conjugated Annexin V protein. Results: IS treatment increased ROS production, decreased cell viability and induced apoptosis in HK-2 cells. IS treatment increased the expression of apoptosis-related protein Bax, decreased Bcl-2 expression, and activated phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt. In contrast, paricalcitol treatment decreased Bax expression, increased Bcl-2 expression, and inhibited phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt in HK-2 cells. $NF-{\kappa}B$ promoter activity was increased following IS, administration and was counteracted by pretreatment with paricalcitol. Additionally, flow cytometry analysis revealed that IS-induced apoptosis was attenuated by paricalcitol treatment, which resulted in decreased numbers of fluorescein isothiocyanate-conjugated Annexin V positive cells. Conclusions: Treatment with paricalcitol inhibited IS-induced apoptosis by regulating MAPK, $NF-{\kappa}B$, and Akt signaling pathway in HK-2 cells.

Identifying the Anti-Cancer Effect of Indigo Naturalis in Small Cell Lung Cancer Based on Network Pharmacological Analysis (네트워크 약리학적 분석에 의한 소세포폐암에 대한 청대의 항암기전 연구)

  • Young Hoon, Kim;Woo Jin, Jeong;Gwang Hee, Jeong;Youn Sook, Kim;Won Gun, An
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.6
    • /
    • pp.229-234
    • /
    • 2022
  • Lung cancer is the leading cause of cancer-related deaths worldwide. Indigo Naturalis (IN) is a dark blue powder obtained by processing leaves or stems of indigo plants, its anticancer effects have been reported in several studies. However, the pharmacological mechanism of IN in small cell lung cancer (SCLC) is not elucidated. In this study, to investigate the anticancer efficacy of IN for SCLC, we presented potential active ingredients, SCLC-related targets, and pharmacological mechanisms of IN that are expected to have anticancer activity for SCLC using a network pharmacological analysis. The phytochemical compounds of IN have been collected through TCMSP, SymMap, or HPLC documents. The active ingredients of IN such as indirubin, indican, isatin, and tryptanthrin were selected through ADME parameters or literature investigations for each compound. Using the Compounds, Disease-Target associations Databases, 124 common targets of IN and SCLC were obtained. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis was carried out. GO biological processes are associated with response to xenobiotic stimulus, positive regulation of protein phosphorylation, regulation of mitotic cell cycle, and regulation of apoptotic signaling pathway. KEGG disease pathways included Gastric cancer, Bladder cancer, SCLC, and Melanoma. The main anticancer targets of the IN for SCLC were analyzed in 14 targets, including BCL2, MYC, and TP53. In conclusion, the results of this study based on the network pharmacology of IN can provide important data for the effective prevention and treatment of SCLC.

Traditional Korean diet can alter the urine organic acid profile, which may reflect the metabolic influence of the diet (한식의 체내 대사에 미치는 영향에 대한 연구: 소변 유기산 분석을 통한 한식의 효과)

  • Shin, Phil-Kyung;Chun, Sukyung;Kim, Myung Sunny;Park, Seon-Joo;Kim, Min Jung;Kwon, Dae Young;Kim, KyongChol;Lee, Hae-Jeung;Choi, Sang-Woon
    • Journal of Nutrition and Health
    • /
    • v.53 no.3
    • /
    • pp.231-243
    • /
    • 2020
  • Purpose: To determine the metabolic influence of the traditional Korean diet (K-diet), which has been regarded as a healthy diet, we investigated the profile of urine organic acids that are intermediates of various types of metabolism including energy metabolism. Methods: Ten women aged 50-60 years were recruited and randomly divided into 2 diet groups, K-diet and control diet, the latter of which is a Westernized Korean diet that is commonly consumed by Koreans nowadays. Before and after the 2-week intervention, 46 urine organic acids were determined using LC/MS/MS, along with clinical parameters. Results: The average concentrations of succinate (4.14 ± 0.84 ㎍/mg creatinine vs. 1.49 ± 0.11, p = 0.0346) and hydroxymethylglutarate (3.67 ± 0.36 ㎍/mg creatinine vs. 2.97 ± 0.29, p = 0.0466), both of which are intermediates of energy metabolism, decreased in the K-diet group after the 2-week intervention, but these were not observed in the control diet group. In particular, the average concentration of succinate in the K-diet group was lower than that in the control group (3.33 ± 0.56 ㎍/mg creatinine vs. 1.49 ± 0.11, p = 0.0284) after 2 weeks. The concentrations of two tryptophan metabolites, 5-hydroxyindolacetate (3.72 ± 0.22 ㎍/mg creatinine vs. 3.14 ± 0.21, p = 0.0183) and indican (76.99 ± 8.35 ㎍/mg creatinine vs. 37.89 ± 10.06, p = 0.0205) also decreased only in the K-diet group. After the 2-week intervention, the concentration of kynurenate, another tryptophan metabolite, was lower in the K-diet group than that in the control diet group (3.96 ± 0.51 ㎍/mg creatinine vs. 2.90 ± 0.22, p = 0.0356). Interestingly, the urine level of kynurenate was positively correlated with BMI (r = 0.61424, p = 0.0003) and total cholesterol (r = 0.46979, p = 0.0088), which decreased only in the K-diet group (239.40 ± 15.14 mg/dL vs. 198.20 ± 13.25, p = 0.0163). Conclusion: The K-diet alters the urinary excretion of organic acids involved in energy metabolism and tryptophan metabolism, suggesting the influence of the K-diet on these types of metabolism. Urine organic acids changed by the K-diet may serve as biomarkers in future studies.