• Title/Summary/Keyword: Indian mackerel

Search Result 3, Processing Time 0.017 seconds

Biological aspects and population dynamics of Indian mackerel (Rastrelliger kanagurta) in Barru, Makassar Strait, Indonesia

  • Andi Asni;Hasrun;Ihsan;Najamuddin
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.392-409
    • /
    • 2024
  • The present study aims to analyze the biological aspects and population dynamics of Indian mackerel in Barru waters. Data was collected in Barru for 11 months, from June 2022 to April 2023. The observed parameters of biological aspects included gonadal maturation stages (GMSs), size at first gonadal maturation, and length-weight relationship. Meanwhile, the aspects of population dynamics encompass age group, growth, mortality rate, and exploitation rate. Data analysis consisted of morphological selection of general maturation stages, Spearman-Kärber method in estimating gonadal first maturation size, Bhattacharya method in identifying age group, von Bertalanffy function through FISAT II to measure growth (L and K), Pauly Model to estimate mortality rate, Beverton & Holt Model to estimate Y/R, and virtual population analysis (VPA) analysis to estimate stock and fish yield. The results demonstrated that GMS I was observed to be dominant, followed by stages II and III. The initial gonadal maturation was estimated to be 17.98-19.28 cm (FL) for females and 17.98-19.27 cm (FL) for males. The length-weight relationship in male and female Indian mackerels indicated a positive allometric growth. The mode grouping analysis results from the fork length measurement revealed three age groups. It was also identified that the asymptotic length (L) = 29.5 cm (fork length), growth rate coefficient (K) = 0.46 per year, and theoretical age at zero length (t0) = -0.3576 per year. Total mortality (Z) = 2.67 per year, natural mortality (M) = 1.10 per year, fishing mortality (F) = 1.57 per year, and exploitation rate (E) = 0.59, the actual Y/R = 0.083 gram/recruitment, and optimal Y/R 0.03 gram/recruitment. Fishing mortality is higher than the natural mortality rate, and a high exploitation value (E > 0.5) also reflects over-exploitation. VPA analysis on fish yields and stock estimation reported a highly exploited rate between the 11.5 cm and 14.5 cm length classes and an exceeding current yield of 467.07 tons/year with a recommended yield of 233.53 tons/year to ensure population sustainability.

Ecosystem-based Fishery Risk Assessment of Tuna Fisheries in the Western Indian Ocean (서부인도양 해역 다랑어어업의 생태계기반 어업 위험도 평가)

  • Young Shin Ha;Sung Il Lee;Youjung Kwon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.449-461
    • /
    • 2023
  • The aim of this study was to conduct an ecosystem-based fishery risk assessment of tuna fisheries in the Western Indian Ocean. We selected gillnet, purse seine, hand line, baitboat, and longline fisheries as the target fisheries method, and selected longtail tuna (Thunnus tonggol), narrow-barred Spanish mackerel (Scomberomorus commerson), kawakawa (Euthynnus affinis), skipjack tuna (Katsuwonus pelamis), yellowfin tuna (T. albacares), bigeye tuna (T. obesus), albacore tuna (T. alalunga) and swordfish (Xiphias gladius) as the target species. The risk score for the size at the first capture in sustainability objective was high, especially, for the purse seine and baitboat fisheries using the fish aggregating devices (FADs). The risk score for the bycatch in the biodiversity objective was high for the gillnet fishery, and the gillnet fisheries using FADs showed high risks for the habitat quality objective due to the loss of the fishing gears. With regards to the socio-economic benefits objective, the risk score of the sales profits was low due to high sales of the tuna fisheries. The ecosystem risk score in the Western Indian Ocean was estimated to be moderate, although management is required for some of the indicators that have high-risk scores.

The Exploitation of World Fishery Resources for 10 Years under the New Regime in the Sea (신해양질서 10년후 세계어업자원 이용동향)

  • 이장욱;허영희
    • The Journal of Fisheries Business Administration
    • /
    • v.23 no.1
    • /
    • pp.43-87
    • /
    • 1992
  • In this paper, state of exploitation of world fishery resources after 10 years under the new regime in the sea, called the era of exclusive economic zone (EEZ) expending up to a 200 nautical miles from coastal line, was reviewed to determine effect from establishing EEZ in the world fishery production and its export/import volume based on the fishery statistics annually published by the Food and Agriculture Organization (FAO) of United Nation. The world total production from marine living resources had a trend showing a waned increase during 1970's when most of coastal states were translated into the reality of EEZ. From mid-1980's onwards, it increased rapidly, reaching about 85 million tons . Such increase in production was basically from the Pacific Ocean, accounting for more than 60% of the world total production. Fishing areas where showed increase in the production after the new regime in the sea were the southwestern Atlantic (FAO area 41) , the eastern Indian (FAO area 57) and the whole fishing areas in the Pacific except the eastern central Pacific (FAO area 77). Increase in the production from distant-water fishing countries came from the regions of the southwest Atlantic (FAO area 41) and the southwest Pacific (FAO area 81) . The production from coastal states was up from the regions of the eastern Indian (FAO area 57) , the northwest and northeast Pacific (FAO areas 61 and 67) and the southeast Pacific (FAO area 87) . It was likely that the exploitation of the fishable stocks was well monitored in the areas of the northwest Atlantic (FAO area 21) , the eastern central Atlantic (FAO area 34) and the northeast Pacific (FAO area 67) through appropriate management measures such as annual harvest level, establishment of total allowable catch etc. The marine fisheries resources that have made contribution to the world production, despite expansion of 200 EEZ by coastal states, were sardinellas, Atlantic cod, blue whiting and squids in the Atlantic Ocean : tunas which mainly include skipjack, yellowfin and bigeye tuna, croakers and pony fishes in the Indian Ocean : and sardine, Chilean pilchard, Alaska pollock, tunas (skipjack and yellowfin tuna) , blue grenadier and blue whiting including anchoveta in the Pacific Ocean. It was identified that both fishery production and its export since introduction of the new regime in the sea were dominated by such coastal states as USA, Canada, Indonesia, Thailand, Mexico, South Africa and Newzealand. But difficulties have been experienced in the European countries including Norway, Spain, Japan and Rep. of Korea. Therefore, majority of coastal states are unlikely to have yet undertaken proper utilization as well as rational management of marine living resources in their jurisdiction during the last two decades. The main target species groups which led the world fishery production to go up were Alaska pollock, cods, tunas, sardinellas, chub and jack mackerel and anchoveta. These stocks are largely expected to continue to contribute to the production. The fisheries resources which are unexploited, underexploited and/or lightly exploited at present and which will be contributed to the world production in future are identified with cephalopods, Pacific jack mackerel and Atlantic mackerel, silver hake including anchovies. These resources mainly distribute in the Pacific regions, especially FAO statistical fishing areas 67, 77 and 87. It was likely to premature to conclude that the new regime in the sea was only in favour of coastal states in fishey production.

  • PDF