• Title/Summary/Keyword: Indexing Model

Search Result 169, Processing Time 0.019 seconds

Implications of Social Tagging for Digital Libraries: Benefiting from User Collaboration in the Creation of Digital Knowledge (디지털 도서관을 위한 소셜 태깅의 의미: 이용자 협력을 활용한 디지털 지식 생성)

  • Choi, Yun-Seon
    • Journal of the Korean Society for information Management
    • /
    • v.27 no.2
    • /
    • pp.225-239
    • /
    • 2010
  • This study aims to answer whether social tagging through user collaboration could be utilized for the creation of digital knowledge of the web, and whether we could verify the quality and efficacy of social tagging to obtain benefits from it. In particular, this paper examines the inter-indexer consistency of social tagging in comparison to professional indexing. It employs two different similarity measures, both of which are based on the Vector Space Model to deal with numerous indexers. It contributes to the utilization of social tagging in the organization of the web, and encourages to adopt social knowledge in developing suitable vocabularies for resources newly generated in the digital library environment. Furthermore, the comparative analysis with two different measures produced more credible results by illustrating a similar pattern of indexing tendency in both measures.

Performance Evaluation on Structure-based Retrievals of XML Documents (XML 문서의 구조기반 검색성능 평가)

  • Kim, Su-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.396-406
    • /
    • 2009
  • In extension to our previous study, we develop metadata that specify elements' structural orders, to increase the efficiency level of XML document's retrieval process. Then, we proposed a structure-based indexing model. We expect the model to generate a more efficient retrieval process of horizontally and vertically related elements. To evaluate the model's performance level, we developed an experimental prototype and conducted an experiment on an XML corpus. On average, descendant, ancestor and sibling retrievals were approximately twelve percent faster than the ETID model. And retrievals specifying structural orders of particular element types were approximately twenty-five percent faster than the ETID model. In conclusion, metadata, such as Etype, Asso and Lsso, may make a meaningful contribution to retrieval processes that specify elements' order.

Shape-Based Subsequence Retrieval Supporting Multiple Models in Time-Series Databases (시계열 데이터베이스에서 복수의 모델을 지원하는 모양 기반 서브시퀀스 검색)

  • Won, Jung-Im;Yoon, Jee-Hee;Kim, Sang-Wook;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.10D no.4
    • /
    • pp.577-590
    • /
    • 2003
  • The shape-based retrieval is defined as the operation that searches for the (sub) sequences whose shapes are similar to that of a query sequence regardless of their actual element values. In this paper, we propose a similarity model suitable for shape-based retrieval and present an indexing method for supporting the similarity model. The proposed similarity model enables to retrieve similar shapes accurately by providing the combination of various shape-preserving transformations such as normalization, moving average, and time warping. Our indexing method stores every distinct subsequence concisely into the disk-based suffix tree for efficient and adaptive query processing. We allow the user to dynamically choose a similarity model suitable for a given application. More specifically, we allow the user to determine the parameter p of the distance function $L_p$ when submitting a query. The result of extensive experiments revealed that our approach not only successfully finds the subsequences whose shapes are similar to a query shape but also significantly outperforms the sequence search.

An Indexing Technique for Object-Oriented Geographical Databases (객체지향 지리정보 데이터베이스를 위한 색인기법)

  • Bu, Ki-Dong
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.2
    • /
    • pp.105-120
    • /
    • 1997
  • One of the most important issues of object-oriented geographical database system is to develop an indexing technique which enables more efficient I/O processing within aggregation hierarchy or inheritance hierarchy. Up to present, several indexing schemes have been developed for this purpose. However, they have separately focused on aggregation hierarchy or inheritance hierarchy of object-oriented data model. A recent research is proposing a nested-inherited index which combines these two hierarchies simultaneously. However, this new index has some weak points. It has high storage costs related to its use of auxiliary index. Also, it cannot clearly represent the inheritance relationship among classes within its index structure. To solve these problems, this thesis proposes a pointer-chain index. Using pointer chain directory, this index composes a hierarchy-typed chain to show the hierarchical relationship among classes within inheritance hierarchy. By doing these, it could fetch the OID list of objects to be retrieved more easily than before. In addition, the pointer chain directory structure could accurately recognize target cases and subclasses and deal with "select-all" typed query without collection of schema semantic information. Also, it could avoid the redundant data storing, which usually happens in the process of using auxiliary index. This study evaluates the performance of pointer chain indexing technique by way of simulation method to compare nested-inherited index. According to this simulation, the pointer chain index is proved to be more efficient with regard to storage cost than nested-inherited index. Especially in terms of retrieval operation, it shows efficient performance to that of nested-inherited index.

  • PDF

Road Object Graph Modeling Method for Efficient Road Situation Recognition (효과적인 도로 상황 인지를 위한 도로 객체 그래프 모델링 방법)

  • Ariunerdene, Nyamdavaa;Jeong, Seongmo;Song, Seokil
    • Journal of Platform Technology
    • /
    • v.9 no.4
    • /
    • pp.3-9
    • /
    • 2021
  • In this paper, a graph data model is introduced to effectively recognize the situation between each object on the road detected by vehicles or road infrastructure sensors. The proposed method builds a graph database by modeling each object on the road as a node of the graph and the relationship between objects as an edge of the graph, and updates object properties and edge properties in real time. In this case, the relationship between objects represented as edges is set when there is a possibility of approach between objects in consideration of the position, direction, and speed of each object. Finally, we propose a spatial indexing technique for graph nodes and edges to update the road object graph database represented through the proposed graph modeling method continuously in real time. To show the superiority of the proposed indexing technique, we compare the proposed indexing based database update method to the non-indexing update method through simulation. The results of the simulation show the proposed method outperforms more than 10 times to the non-indexing method.

The cluster-indexing collaborative filtering recommendation

  • Park, Tae-Hyup;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.400-409
    • /
    • 2003
  • Collaborative filtering (CF) recommendation is a knowledge sharing technology for distribution of opinions and facilitating contacts in network society between people with similar interests. The main concerns of the CF algorithm are about prediction accuracy, speed of response time, problem of data sparsity, and scalability. In general, the efforts of improving prediction algorithms and lessening response time are decoupled. We propose a three-step CF recommendation model which is composed of profiling, inferring, and predicting steps while considering prediction accuracy and computing speed simultaneously. This model combines a CF algorithm with two machine learning processes, SOM (Self-Organizing Map) and CBR (Case Based Reasoning) by changing an unsupervised clustering problem into a supervised user preference reasoning problem, which is a novel approach for the CF recommendation field. This paper demonstrates the utility of the CF recommendation based on SOM cluster-indexing CBR with validation against control algorithms through an open dataset of user preference.

  • PDF

Case-Based Reasoning Cost Estimation Model Using Two-Step Retrieval Method

  • Lee, Hyun-Soo;Seong, Ki-Hoon;Park, Moon-Seo;Ji, Sae-Hyun;Kim, Soo-Young
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Case-based reasoning (CBR) method can make estimators understand the estimation process more clearly. Thus, CBR is widely used as a methodology for cost estimation. In CBR, the quality of case retrieval affects the relevance of retrieved cases and hence the overall quality of the reminding capability of CBR system. Thus, it is essential to retrieve relevant past cases for establishing a robust CBR system. Case retrieval needs the following tasks to obtain appropriate case(s); indexing, search, and matching (Aamodt and Plaza 1994). However, the previous CBR researches mostly deal with matching process that has limits such as accuracy and efficiency of case retrieval. In order to address this issue, this research presents a CBR cost model for building projects that has two-step retrieval process: decision tree and nearest neighbor methods. Specifically, the proposed cost model has indexing, search and matching modules. Features in the model are divided into shape-based and scale-based attributes. Based on these, decision tree is established for facilitating the search task and nearest neighbor method was utilized for matching task. In regard to applying nearest neighbor method, attribute weights are assigned using GA optimization and similarity is calculated using the principle of distance measuring. Thereafter, the proposed CBR cost model is developed using 174 cases and validated using 12 test cases.

Algorithms for Indexing and Integrating MPEG-7 Visual Descriptors (MPEG-7 시각 정보 기술자의 인덱싱 및 결합 알고리즘)

  • Song, Chi-Ill;Nang, Jong-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • This paper proposes a new indexing mechanism for MPEG-7 visual descriptors, especially Dominant Color and Contour Shape descriptors, that guarantees an efficient similarity search for the multimedia database whose visual meta-data are represented with MPEG-7. Since the similarity metric used in the Dominant Color descriptor is based on Gaussian mixture model, the descriptor itself could be transform into a color histogram in which the distribution of the color values follows the Gauss distribution. Then, the transformed Dominant Color descriptor (i.e., the color histogram) is indexed in the proposed indexing mechanism. For the indexing of Contour Shape descriptor, we have used a two-pass algorithm. That is, in the first pass, since the similarity of two shapes could be roughly measured with the global parameters such as eccentricity and circularity used in Contour shape descriptor, the dissimilar image objects could be excluded with these global parameters first. Then, the similarities between the query and remaining image objects are measured with the peak parameters of Contour Shape descriptor. This two-pass approach helps to reduce the computational resources to measure the similarity of image objects using Contour Shape descriptor. This paper also proposes two integration schemes of visual descriptors for an efficient retrieval of multimedia database. The one is to use the weight of descriptor as a yardstick to determine the number of selected similar image objects with respect to that descriptor, and the other is to use the weight as the degree of importance of the descriptor in the global similarity measurement. Experimental results show that the proposed indexing and integration schemes produce a remarkable speed-up comparing to the exact similarity search, although there are some losses in the accuracy because of the approximated computation in indexing. The proposed schemes could be used to build a multimedia database represented in MPEG-7 that guarantees an efficient retrieval.

The Study On the Effectiveness of Information Retrieval in the Vector Space Model and the Neural Network Inductive Learning Model

  • Kim, Seong-Hee
    • The Journal of Information Technology and Database
    • /
    • v.3 no.2
    • /
    • pp.75-96
    • /
    • 1996
  • This study is intended to compare the effectiveness of the neural network inductive learning model with a vector space model in information retrieval. As a result, searches responding to incomplete queries in the neural network inductive learning model produced a higher precision and recall as compared with searches responding to complete queries in the vector space model. The results show that the hybrid methodology of integrating an inductive learning technique with the neural network model can help solve information retrieval problems that are the results of inconsistent indexing and incomplete queries--problems that have plagued information retrieval effectiveness.

  • PDF

Efficient Video Retrieval Scheme with Luminance Projection Model (휘도투시모델을 적용한 효율적인 비디오 검색기법)

  • Kim, Sang Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8649-8653
    • /
    • 2015
  • A number of video indexing and retrieval algorithms have been proposed to manage large video databases efficiently. The video similarity measure is one of most important technical factor for video content management system. In this paper, we propose the luminance characteristics model to measure the video similarity efficiently. Most algorithms for video indexing have been commonly used histograms, edges, or motion features, whereas in this paper, the proposed algorithm is employed an efficient similarity measure using the luminance projection. To index the video sequences effectively and to reduce the computational complexity, we calculate video similarity using the key frames extracted by the cumulative measure, and compare the set of key frames using the modified Hausdorff distance. Experimental results show that the proposed luminance projection model yields the remarkable improved accuracy and performance than the conventional algorithm such as the histogram comparison method, with the low computational complexity.