• Title/Summary/Keyword: Index of Fuzziness

Search Result 14, Processing Time 0.019 seconds

Fuzziness for Buckling Loads of Columns with Uncertain Medums (불확실한 매체를 갖는 기둥 좌굴하중의 애매성)

  • 이병구;오상진
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.86-96
    • /
    • 1995
  • In this paper the fuzzy extension for the classical engineering mechanics problems is studied. The governing differential equation is derived for the buckling loads of the columns with uncertain mediums: the their own weight and the flexural rigidity. The columns with one typical end constraint(hinged1 clarnped/free) and the other finite rotational spring with fuzzy constant are considered in numerical examples. The vertex method is used to evaluate the fuzzy functions. The Runge-Kutta method and Determinant Search method are used to solve the differential equation and determine the buckling loads, respectively. The membership functions of the buckling load are calculated. The index of fuzziness to quantitatively describe the propagation of fuzziness is defined. According to the fuzziness of governing factors, the varlation of index of fuzziness for buckling load is investigated, and the sensitivity for the end constraints is analyzed.

  • PDF

A Survey on the Fuzzy Control Systems with Learning/Adaptation Capability (학습/적응력을 갖는 퍼지제어시스템들에 관한 고찰)

  • 김용태;이연정;이승하;정태신;변증남
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.11-35
    • /
    • 1995
  • In this paper the fuzzy extension for the classical engineering mechanics problems is studied. The governing differential equation is derived for the buckling loads of the columns with uncertain mediums: the their own weight and the flexural rigidity. The columns with one typical end constraint(hinged1 clarnped/free) and the other finite rotational spring with fuzzy constant are considered in numerical examples. The vertex method is used to evaluate the fuzzy functions. The Runge-Kutta method and Determinant Search method are used to solve the differential equation and determine the buckling loads, respectively. The membership functions of the buckling load are calculated. The index of fuzziness to quantitatively describe the propagation of fuzziness is defined. According to the fuzziness of governing factors, the varlation of index of fuzziness for buckling load is investigated, and the sensitivity for the end constraints is analyzed.

  • PDF

Adaptive Threshold Determination Using Global and local Fuzzy Measures

  • Jin, Mun-Gwang;Woo, Dong-Min;Lee, Kyu-Wong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.333-336
    • /
    • 2002
  • This paper presents a new image segmentation method using fuzzy measures which reflect the local property of an image as well as the global property of an image An image is globally segmented into the crisp region and the ambiguous region in terms of the Index of fuzziness measured over all pixels of an image. The ambiguous region is luther partitioned into background and object in terms of the index of fuzziness computed over the set of neighboring pixels reflecting the local property most. From the experimental results, this method shows the effective ambiguity handling capability in segmenting an image.

Image Contrast Enhancement Technique Using Clustering Algorithm (클러스터링 알고리듬을 이용한 영상 대비 향상 기법)

  • Kim, Nam-Jin;Kim, Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.310-315
    • /
    • 2004
  • Image taken in the night can be low-contrast images because of poor environment and image transmission. We propose an algorithm that improves the acquired low-contrast image. MPEG-2 separates chrominance and illuminance, and compresses respectively because human vision is more sensitive to luminance. We extracted illumination and used K-means algorithm to find a proper crossover point automatically. We used K-means algorithm in the viewpoint that the problem of crossover point selection can be considered as the two-category classification problem. We divided an image into two subimages using the crossover point, and applied the histogram equalization method respectively. We used the index of fuzziness to evaluate the degree of improvement. We compare the results of the proposed method with those of other methods.

An Image Contrast Enhancement Technique Using the Improved Integrated Adaptive Fuzzy Clustering Model (개선된 IAFC 모델을 이용한 영상 대비 향상 기법)

  • 이금분;김용수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.777-781
    • /
    • 2001
  • This paper presents an image contrast enhancement technique for improving the low contrast images using the improved IAFC(Integrated Adaptive Fuzzy Clustering) model. The low pictorial information of a low contrast image is due to the vagueness or fuzziness of the multivalued levels of brightness rather than randomness. Fuzzy image processing has three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. Using a new model of automatic crossover point selection, optimal crossover point is selected automatically. The problem of crossover point selection can be considered as the two-category classification problem. The improved IAFC model is used to classify the image into two classes. The proposed method is applied to several experimental images with 256 gray levels and the results are compared with those of the histogram equalization technique. We utilized the index of fuzziness as a measure of image quality. The results show that the proposed method is better than the histogram equalization technique.

  • PDF

A Fuzzy Image Contrast Enhancement Technique using the K-means Algorithm (K-means 알고리듬을 이용한 퍼지 영상 대비 강화 기법)

  • 정준희;김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.295-299
    • /
    • 2002
  • This paper presents an image contrast enhancement technique for improving low contrast images. We applied fuzzy logic to develop an image contrast enhancement technique in the viewpoint of considering that the low pictorial information of a low contrast image is due to the vaguness or fuzziness of the multivalued levels of brightness rather than randomness. The fuzzy image contrast enhancement technique consists of three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. In the stage of image fuzzification, we need to select a crossover point. To select the crossover point automatically the K-means algorithm is used. The problem of crossover point selection can be considered as the two-category, object and background, classification problem. The proposed method is applied to an experimental image with 256 gray levels and the result of the proposed method is compared with that of the histogram equalization technique. We used the index of fuzziness as a measure of image quality. The result shows that the proposed method is better than the histogram equalization technique.

An Image Contrast Enhancement Technique Using Integrated Adaptive Fuzzy Clustering Model (IAFC 모델을 이용한 영상 대비 향상 기법)

  • 이금분;김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.279-282
    • /
    • 2001
  • This paper presents an image contrast enhancement technique for improving the low contrast images using the improved IAFC(Integrated Adaptive Fuzzy Clustering) Model. The low pictorial information of a low contrast image is due to the vagueness or fuzziness of the multivalued levels of brightness rather than randomness. Fuzzy image processing has three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. Using a new model of automatic crossover point selection, optimal crossover point is selected automatically. The problem of crossover point selection can be considered as the two-category classification problem. The improved MEC can classify the image into two classes with unsupervised teaming rule. The proposed method is applied to some experimental images with 256 gray levels and the results are compared with those of the histogram equalization technique. We utilized the index of fuzziness as a measure of image quality. The results show that the proposed method is better than the histogram equalization technique.

  • PDF

The Optimal Partition of Initial Input Space for Fuzzy Neural System : Measure of Fuzziness (퍼지뉴럴 시스템을 위한 초기 입력공간분할의 최적화 : Measure of Fuzziness)

  • Baek, Deok-Soo;Park, In-Kue
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.3
    • /
    • pp.97-104
    • /
    • 2002
  • In this paper we describe the method which optimizes the partition of the input space by means of measure of fuzziness for fuzzy neural network. It covers its generation of fuzzy rules for input sub space. It verifies the performance of the system depended on the various time interval of the input. This method divides the input space into several fuzzy regions and assigns a degree of each of the generated rules for the partitioned subspaces from the given data using the Shannon function and fuzzy entropy function generating the optimal knowledge base without the irrelevant rules. In this scheme the basic idea of the fuzzy neural network is to realize the fuzzy rule base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by the steepest descent algorithm. According to the input interval the proposed inference procedure proves that the fast convergence of root mean square error (RMSE) owes to the optimal partition of the input space

An Exploration of Korean Discourses on Public Diplomacy

  • Ayhan, Kadir Jun
    • Journal of Contemporary Eastern Asia
    • /
    • v.19 no.1
    • /
    • pp.31-42
    • /
    • 2020
  • There is great confusion over what constitutes public diplomacy (PD), who its actors are, and the relevance of non-state actors. In the Korean context, in addition to the general fuzziness of the concept, linguistic peculiarities of the terms gonggong and gongjung both of which refer to public, waegyo, which is interchangeably used for international affairs, foreign policy and diplomacy, and juche which is simultaneously used for actor and agent, add more layers of confusion. While the term PD in Korea is based almost entirely on Western conceptualization, these linguistic peculiarities prevent fruitful conversations among scholars and practitioners on PD. Against this background, this research note explores and addresses conceptual ambiguities that pertains to PD and the policy discourse on the topic, particularly on non-state PD in Korea. The paper draws on Korean government's PD-related policy documents and Diplomatic White Papers and all relevant academic articles found in Korean-language journals registered in the Korean Citation Index (KCI), which are analysed to gain an understanding of the PD-related policy discourse in Korea.

A Image Contrast Enhancement Technique by Histogram Distribution Alteration Using Clustering Algorithm (클러스터링 알고리듬을 이용한 히스토그램 변경에 의한 영상 대비 향상 기법)

  • 김남진;김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.177-180
    • /
    • 2003
  • 텔레비젼 카메라, 비디콘 카메라(vidicon camera), 디지털 검지기, 스캐너 등 물리적 장치로 획득한 영상은 주위의 밝기로 인하여 어두운 영상을 얻거나 영상장치의 물리적 속성과 영상 전송에 기인하여 영상은 열악한 대비를 가질 수 있다. 본 논문에서는 획득한 저대비 영상을 대비 향상시켜주는 기법을 제안한다. 제안된 기법은 K-means 알고리듬을 사용하여 교차점을 자동으로 선정하는 방법을 사용한다. 이 최적의 교차점을 선정하는 과정은 획득한 영상을 물체와 배경으로 분리하는 두 개의 클래스 문제로 보고 K-means 알고리듬을 적용하였다. 구한 교차점을 사용하여 영상을 양분하여 히스토그램 평활화 방법을 적용하였다. 본 논문에서는 퍼지성 지수(index of fuzziness)를 사용하여 향상의 정도를 측정하였다. 제안된 기법을 저대비 영상에 적용하였으며 그 결과를 히스토그램 평활화 기법의 결과와 비교하였다.

  • PDF