• Title/Summary/Keyword: Index Future Trading

Search Result 32, Processing Time 0.029 seconds

The Impact of Index Future Introduction on Spot Market Returns and Trading Volume: Evidence from Ho Chi Minh Stock Exchange

  • NGUYEN, Anh Thi Kim;TRUONG, Loc Dong
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.8
    • /
    • pp.51-59
    • /
    • 2020
  • The objective of this study is to enrich the literature by investigating the impact of introduction of index future trading on spot market returns and trading volume in Vietnam. Data used in this study mainly consist of daily VN30-Index and market trading volume series during the period from February 6th, 2012 to December 31st, 2019. Using OLS, GARCH(1,1) and EGARCH(1,1) models, the empirical findings consistently confirm that the introduction of index future trading has no impact on the spot market returns. In addition, the results of the EGARCH(1,1) model indicate that the leverage effect on the spot market volatility is existence in HOSE. Specifically, bad news has a greater effect on the market volatility than good news of the same size. Moreover, our empirical findings reveal that the introduction of index future contracts has the positive impact on the underlying market trading volume. Specifically, the trading volume of the post-index futures introduction increases by 7.5 percent compared with the pre-index futures introduction. Finally, the results obtained from the Granger causality test for the relationship between the spot market returns and the future trading activity confirm that only uni-directional causality running from the market returns to the future trading activity exists in HOSE.

Analysis of Trading Performance on Intelligent Trading System for Directional Trading (방향성매매를 위한 지능형 매매시스템의 투자성과분석)

  • Choi, Heung-Sik;Kim, Sun-Woong;Park, Sung-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.187-201
    • /
    • 2011
  • KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.

S & P 500 Stock Index' Futures Trading with Neural Networks (신경망을 이용한 S&P 500 주가지수 선물거래)

  • Park, Jae-Hwa
    • Journal of Intelligence and Information Systems
    • /
    • v.2 no.2
    • /
    • pp.43-54
    • /
    • 1996
  • Financial markets are operating 24 hours a day throughout the world and interrelated in increasingly complex ways. Telecommunications and computer networks tie together markets in the from of electronic entities. Financial practitioners are inundated with an ever larger stream of data, produced by the rise of sophisticated database technologies, on the rising number of market instruments. As conventional analytic techniques reach their limit in recognizing data patterns, financial firms and institutions find neural network techniques to solve this complex task. Neural networks have found an important niche in financial a, pp.ications. We a, pp.y neural networks to Standard and Poor's (S&P) 500 stock index futures trading to predict the futures marker behavior. The results through experiments with a commercial neural, network software do su, pp.rt future use of neural networks in S&P 500 stock index futures trading.

  • PDF

Using correlated volume index to support investment strategies in Kospi200 future market (거래량 지표를 이용한 코스피200 선물 매매 전략)

  • Cho, Seong-Hyun;Oh, Kyong Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.235-244
    • /
    • 2013
  • In this study, we propose a new trading strategy by using a trading volume index in KOSPI200 futures market. Many studies have been conducted with respect to the relationship between volume and price, but none of them is clearly concluded. This study analyzes the economic usefulness of investment strategy, using volume index. This analysis shows that the trading volume is a preceding index. This paper contains two objectives. The first objective is to make an index using Correlated Volume Index (CVI) and second objective is to find an appropriate timing to buy or sell the Kospi200 future index. The results of this study proved the importance of the proposed model in KOSPI200 futures market, and it will help many investors to make the right investment decision.

Trading Volume and Overpricing of Lottery-type Stocks (거래량이 복권특성 종목의 기대수익률에 미치는 영향)

  • Yong-Ho Cheon
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.1
    • /
    • pp.113-129
    • /
    • 2023
  • Purpose - The purpose of this study is to examine whether trading volume amplifies the extent to which lottery-type stocks are overpriced, and whether economic sentiment index explains time-variation in the magnitude of the volume amplification effect. Design/methodology/approach - We examine monthly returns on 5x5 monthly bivariate portfolios formed by lottery characteristics (measured by maximum daily return) and trading volume. In addition, we perform time-series regression tests to examine how the volume amplification effect changes in high and low economic sentiment periods, after controlling for Fama-French three factors. Findings - Our bivariate portfolio analysis shows that the overpricing of lottery-type stocks are mostly pronounced among high trading volume stocks. In contrast, for low trading volume stocks, overpricing of lottery-type stocks appears to vanish. Furthermore, the amplification effect of trading volume on overpricing of lottery-type stock is concentrated in high economic sentiment periods. Research implications or Originality - This study is the first attempt to examine whether trading volume drives lottery-type stocks' overpricing in the Korean stock market. Furthermore, our analysis unveils the time-varying nature of volume amplification effect. The results suggest that trading volume might play a important hidden role in asset pricing, opening a new line of researches in the future.

Can Big Data Help Predict Financial Market Dynamics?: Evidence from the Korean Stock Market

  • Pyo, Dong-Jin
    • East Asian Economic Review
    • /
    • v.21 no.2
    • /
    • pp.147-165
    • /
    • 2017
  • This study quantifies the dynamic interrelationship between the KOSPI index return and search query data derived from the Naver DataLab. The empirical estimation using a bivariate GARCH model reveals that negative contemporaneous correlations between the stock return and the search frequency prevail during the sample period. Meanwhile, the search frequency has a negative association with the one-week- ahead stock return but not vice versa. In addition to identifying dynamic correlations, the paper also aims to serve as a test bed in which the existence of profitable trading strategies based on big data is explored. Specifically, the strategy interpreting the heightened investor attention as a negative signal for future returns appears to have been superior to the benchmark strategy in terms of the expected utility over wealth. This paper also demonstrates that the big data-based option trading strategy might be able to beat the market under certain conditions. These results highlight the possibility of big data as a potential source-which has been left largely untapped-for establishing profitable trading strategies as well as developing insights on stock market dynamics.

VKOSPI Forecasting and Option Trading Application Using SVM (SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용)

  • Ra, Yun Seon;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.177-192
    • /
    • 2016
  • Machine learning is a field of artificial intelligence. It refers to an area of computer science related to providing machines the ability to perform their own data analysis, decision making and forecasting. For example, one of the representative machine learning models is artificial neural network, which is a statistical learning algorithm inspired by the neural network structure of biology. In addition, there are other machine learning models such as decision tree model, naive bayes model and SVM(support vector machine) model. Among the machine learning models, we use SVM model in this study because it is mainly used for classification and regression analysis that fits well to our study. The core principle of SVM is to find a reasonable hyperplane that distinguishes different group in the data space. Given information about the data in any two groups, the SVM model judges to which group the new data belongs based on the hyperplane obtained from the given data set. Thus, the more the amount of meaningful data, the better the machine learning ability. In recent years, many financial experts have focused on machine learning, seeing the possibility of combining with machine learning and the financial field where vast amounts of financial data exist. Machine learning techniques have been proved to be powerful in describing the non-stationary and chaotic stock price dynamics. A lot of researches have been successfully conducted on forecasting of stock prices using machine learning algorithms. Recently, financial companies have begun to provide Robo-Advisor service, a compound word of Robot and Advisor, which can perform various financial tasks through advanced algorithms using rapidly changing huge amount of data. Robo-Adviser's main task is to advise the investors about the investor's personal investment propensity and to provide the service to manage the portfolio automatically. In this study, we propose a method of forecasting the Korean volatility index, VKOSPI, using the SVM model, which is one of the machine learning methods, and applying it to real option trading to increase the trading performance. VKOSPI is a measure of the future volatility of the KOSPI 200 index based on KOSPI 200 index option prices. VKOSPI is similar to the VIX index, which is based on S&P 500 option price in the United States. The Korea Exchange(KRX) calculates and announce the real-time VKOSPI index. VKOSPI is the same as the usual volatility and affects the option prices. The direction of VKOSPI and option prices show positive relation regardless of the option type (call and put options with various striking prices). If the volatility increases, all of the call and put option premium increases because the probability of the option's exercise possibility increases. The investor can know the rising value of the option price with respect to the volatility rising value in real time through Vega, a Black-Scholes's measurement index of an option's sensitivity to changes in the volatility. Therefore, accurate forecasting of VKOSPI movements is one of the important factors that can generate profit in option trading. In this study, we verified through real option data that the accurate forecast of VKOSPI is able to make a big profit in real option trading. To the best of our knowledge, there have been no studies on the idea of predicting the direction of VKOSPI based on machine learning and introducing the idea of applying it to actual option trading. In this study predicted daily VKOSPI changes through SVM model and then made intraday option strangle position, which gives profit as option prices reduce, only when VKOSPI is expected to decline during daytime. We analyzed the results and tested whether it is applicable to real option trading based on SVM's prediction. The results showed the prediction accuracy of VKOSPI was 57.83% on average, and the number of position entry times was 43.2 times, which is less than half of the benchmark (100 times). A small number of trading is an indicator of trading efficiency. In addition, the experiment proved that the trading performance was significantly higher than the benchmark.

Comparative Study of Automatic Trading and Buy-and-Hold in the S&P 500 Index Using a Volatility Breakout Strategy (변동성 돌파 전략을 사용한 S&P 500 지수의 자동 거래와 매수 및 보유 비교 연구)

  • Sunghyuck Hong
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.57-62
    • /
    • 2023
  • This research is a comparative analysis of the U.S. S&P 500 index using the volatility breakout strategy against the Buy and Hold approach. The volatility breakout strategy is a trading method that exploits price movements after periods of relative market stability or concentration. Specifically, it is observed that large price movements tend to occur more frequently after periods of low volatility. When a stock moves within a narrow price range for a while and then suddenly rises or falls, it is expected to continue moving in that direction. To capitalize on these movements, traders adopt the volatility breakout strategy. The 'k' value is used as a multiplier applied to a measure of recent market volatility. One method of measuring volatility is the Average True Range (ATR), which represents the difference between the highest and lowest prices of recent trading days. The 'k' value plays a crucial role for traders in setting their trade threshold. This study calculated the 'k' value at a general level and compared its returns with the Buy and Hold strategy, finding that algorithmic trading using the volatility breakout strategy achieved slightly higher returns. In the future, we plan to present simulation results for maximizing returns by determining the optimal 'k' value for automated trading of the S&P 500 index using artificial intelligence deep learning techniques.

Technical Trading Rules for Bitcoin Futures (비트코인 선물의 기술적 거래 규칙)

  • Kim, Sun Woong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.94-103
    • /
    • 2021
  • This study aims to propose technical trading rules for Bitcoin futures and empirically analyze investment performance. Investment strategies include standard trading rules such as VMA, TRB, FR, MACD, RSI, BB, using Bitcoin futures daily data from December 18, 2017 to March 31, 2021. The trend-following rules showed higher investment performance than the comparative strategy B&H. Compared to KOSPI200 index futures, Bitcoin futures investment performance was higher. In particular, the investment performance has increased significantly in Sortino Ratio, which reflects downside risk. This study can find academic significance in that it is the first attempt to systematically analyze the investment performance of standard technical trading rules of Bitcoin futures. In future research, it is necessary to improve investment performance through the use of deep learning models or machine learning models to predict the price of Bitcoin futures.

A Study on the Introduction of Derivatives for Hedge of Housing Rent Price -Targeting Apartment Rent Price in Gangnam and Gangbuk Regions of Seoul- (주택전세가격 헤지를 위한 파생상품 도입 연구 - 서울시 강남, 강북지역 아파트 전세가격을 대상으로 -)

  • Choi, In-Sik;Yoo, Seung-Kyu;Kim, Jae-Jun
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • This study aimed to seek a method capable of hedging a rising risk of housing rent price by introducing derivatives with the target of Korean housing rent markets. The research model used in this thesis progressed a research by applying a futures contract method with the target of the rent price of major apartments in Gangnam and Gangbuk Regions of Seoul. As an analysis result, the rent price of all complexes has risen during its analysis period, so it could be confirmed that the CRB future index was also risen according to this. Finally, it was confirmed that the rising risk of the rent price can be hedged through a purchase position of futures. But, as the difference between rent price variation and CRB future index variation occurs, it appeared that 100% of hedge is difficult. However, it is judged that if considering that a method capable of hedging the rising risk of the existing rent price was nonexistent, the hedge trading effect utilizing the CRB future index on the rent price will be meaningful.