• Title/Summary/Keyword: Independent Yaw Moment Control

Search Result 5, Processing Time 0.02 seconds

A Study on the Pivot Steering Control of an In-Wheel Drive Vehicle with Trailing Arm Suspensions (인휠 구동 트레일링 암 형식 차량의 제자리 회전 조향 제어 연구)

  • Kim, Chi-Ung;Lee, Kyoung-Hoon;Woo, Kwan-Je
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.745-752
    • /
    • 2012
  • The pivot steering of an individual wheel motor drive vehicle is an effective steering maneuver in the narrow road, but it has become a matter of concern that the torque input of each wheel is very difficult to determine. In this study, the independent yaw moment control was proposed for the smooth pivot steering control of an in-wheel drive vehicle. For this control method, the vertical forces of tires were estimated from the trailing arm dynamic model, and the yaw moments of individual wheels were calculated from the vehicle dynamic model. Dynamic simulation results showed that the independent yaw moment control was much more effective on the minimization of the instabilities of pivot steering in comparison with the conventional direct yaw moment control with yaw rate feedback.

Improvement of the Yaw Motion for Electric Vehicle Using Independent Front Wheel Steering and Four Wheel Driving (독립 전륜 조향 및 4륜 구동을 이용한 전기 차량의 선회 운동 향상)

  • Jang, Jae-Ho;Kim, Chang-Jun;Kim, Sang-Ho;Kang, Min-Sung;Back, Sung-Hoon;Kim, Young-Soo;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.45-55
    • /
    • 2013
  • With the recent advancement of control method and battery technology, the electric vehicle have been researched to replace the conventional vehicle with electric vehicle with the view point of the environmental concerns and energy conservation. An electric vehicle which is equipped with the independent front steering system and in-wheel motors has advantage in terms of control. For example, the different torque which generated by left and right wheels directly can make yaw moment and the independent steering using outer wheel control is able to reduce the sideslip angle. Using of independent steering and driving system, the 4 wheel electric vehicle can improve a performance better than conventional vehicle. In this paper, we consider the method for improving the cornering performance of independent front steering system and in-wheel motor used electric vehicle with the compensated outer wheel angle and direct yaw moment control. Simulation results show that the method can improve the cornering performance of 4 wheel electric vehicle. We also apply the steering motor failure to steer the vehicle turned by the torque difference without steering. This paper describes an independent front steering and driving, consist of three parts; Vehicle Model, Control Algorithm for independent steering and driving and simulation. First, vehicle model is application of TruckSim software for independent front steering and 4 wheel driving. Second, control algorithm describes the reduced sideslip and direct yaw moment method in view of cornering performance. Last is simulation and verification.

An Investigation into Coordinated Control of 4-wheel Independent Brakes and Active Roll Control System for Vehicle Stability (차량 안정성 향상을 위한 ESC와 ARS의 통합 샤시 제어 알고리즘 개발)

  • Her, Hyundong;Yi, Kyongsu;Suh, Jeeyoon;Kim, Chongkap
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • This paper describes an investigation into coordinated control of electronic stability control (ESC) and active roll control system (ARS). The coordinated control is suggested to improve the vehicle stability and agility features by yaw rate control. The proposed integrated chassis control algorithm consists of a supervisor, control algorithms, and a coordinator. The supervisor monitors the vehicle status and determines desired vehicle motions such as a desired yaw rate and desired roll motion based on control modes to improve vehicle stability. According to the corresponding the desired vehicle dynamics, the control algorithm calculated a desired yaw moment and desired roll moment, respectively. Based on the desired yaw moment and the desired roll moment, the coordinator determines the brake pressures and the ARC motor torques based on control strategies. Closed loop simulations with a driver-vehicle-controller system were conducted to investigate the performance of the proposed control strategy using CarSim vehicle dynamics software and the integrated controller coded using Matlab/Simulink.

A Study on an Independent 6WD/6WS of Electric Vehicle using Optimum Tire Force Distribution (최적 타이어 힘 분배 방법을 통한 전기차의 독립 6WD/6WS에 관한 연구)

  • Kim, Dong-Hyung;Kim, Chang-Jun;Kim, Young-Ryul;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.632-638
    • /
    • 2010
  • This paper presents an optimum tire force distribution method for 6WD/6WS(6-Wheel-Drive and 6-Wheel-Steering) electric vehicles. Using an independent steering and driving system, the performance of 6WD/6WS vehicles can be improved, as, for example, with respect to their maneuverability under low speed and their stability at high speed. Therefore, there should be a control strategy for finding the optimum tire forces that satisfy the driver's command and minimize energy consumption. From the driver's commands (steering angle and accelerator/brake pedal stroke), the desired yaw moment, the desired lateral force, and the desired longitudinal force were obtained. These three values were distributed to each wheel as the torque and the steering angle, based on the optimum tire force distribution method. The optimum tire force distribution method finds the longitudinal/lateral tire forces of each wheel that minimize the cost function, which is the sum of the normalized tire forces. Next, the longitudinal/lateral tire forces of each wheel are converted into the reference torque inputs and the steering wheel angle inputs. The proposed method was tested through a simulation, and its effectiveness was verified.

Path Tracking Control of 6X6 Skid Steering Unmanned Ground Vehicle for Real Time Traversability (실시간 주행 안정성 분석을 위한 6X6 스키드 조향 무인 자율 주행 차량의 경로 추종 제어)

  • Hong, Hyosung;Han, Jong-Boo;Song, Hajun;Jung, Samuel;Kim, Sung-Soo;Yoo, Wan Suk;Won, Mooncheol;Joo, Sanghyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.599-605
    • /
    • 2017
  • For an unmanned vehicle to be driven on the off-road terrain, it is necessary to consider the vehicle's stability. This paper suggests a path tracking controller for simulation of real-time vehicle stability analysis. The path tracking controller uses the preview distance to track the given trajectory. The disturbance moment is estimated using the yaw moment observer, and this information is used for compensation in the yaw moment control. On a curved path, the vehicle's desired velocity is determined from the curvature of the path. Because the vehicle is equipped with six independent motor driven wheels, the driving torques are distributed on all the wheels. The effectiveness of the path tracking controller is verified using ADAMS/MATLAB co-simulation.