• Title/Summary/Keyword: Independent Components Analysis

Search Result 308, Processing Time 0.024 seconds

A Study of Automatic Medical Image Segmentation using Independent Component Analysis (Independent Component Analysis를 이용한 의료영상의 자동 분할에 관한 연구)

  • Bae, Soo-Hyun;Yoo, Sun-Kook;Kim, Nam-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.64-75
    • /
    • 2003
  • Medical image segmentation is the process by which an original image is partitioned into some homogeneous regions like bones, soft tissues, etc. This study demonstrates an automatic medical image segmentation technique based on independent component analysis. Independent component analysis is a generalization of principal component analysis which encodes the higher-order dependencies in the input in addition to the correlations. It extracts statistically independent components from input data. Use of automatic medical image segmentation technique using independent component analysis under the assumption that medical image consists of some statistically independent parts leads to a method that allows for more accurate segmentation of bones from CT data. The result of automatic segmentation using independent component analysis with square test data was evaluated using probability of error(PE) and ultimate measurement accuracy(UMA) value. It was also compared to a general segmentation method using threshold based on sensitivity(True Positive Rate), specificity(False Positive Rate) and mislabelling rate. The evaluation result was done statistical Paired-t test. Most of the results show that the automatic segmentation using independent component analysis has better result than general segmentation using threshold.

Microphone Array Based Speech Enhancement Using Independent Vector Analysis (마이크로폰 배열에서 독립벡터분석 기법을 이용한 잡음음성의 음질 개선)

  • Wang, Xingyang;Quan, Xingri;Bae, Keunsung
    • Phonetics and Speech Sciences
    • /
    • v.4 no.4
    • /
    • pp.87-92
    • /
    • 2012
  • Speech enhancement aims to improve speech quality by removing background noise from noisy speech. Independent vector analysis is a type of frequency-domain independent component analysis method that is known to be free from the frequency bin permutation problem in the process of blind source separation from multi-channel inputs. This paper proposed a new method of microphone array based speech enhancement that combines independent vector analysis and beamforming techniques. Independent vector analysis is used to separate speech and noise components from multi-channel noisy speech, and delay-sum beamforming is used to determine the enhanced speech among the separated signals. To verify the effectiveness of the proposed method, experiments for computer simulated multi-channel noisy speech with various signal-to-noise ratios were carried out, and both PESQ and output signal-to-noise ratio were obtained as objective speech quality measures. Experimental results have shown that the proposed method is superior to the conventional microphone array based noise removal approach like GSC beamforming in the speech enhancement.

INTERIOR ROAD NOISE ANALYSIS WITH PRINCIPAL COMPONENTS

  • Vandenbroeck, D.;Hendricx, W.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.854-859
    • /
    • 1994
  • As powertrain noise is better and better controlled, road noise inputs become more important. The interior road noise of a car is mainly induced by the wheels rolling over the road surface. Each of the four wheels act as an independent and uncorrelated excitation input. To rank the energy transfer form each input to the interior, a Transfer Path Analysis (TPA) needs to be made-which requires operational vibration measurements. However due to the multiple uncorrelated inputs, phase relations vary continuously. It is therefore necessary to separate the operational data into set of "independent phenomena" by means of a Principal Component Analysis (PCA). A TPA can then be carried out for each independent phenomenon. Operational deflection shapes referenced to these principal components share the physical phenomena. The details of the methodology are discussed and a discussion of the results on a car shows that the method gives accurate results for full vehicle testing.e testing.

  • PDF

Predicting Unknown Composition of a Mixture Using Independent Component Analysis (독립성분분석을 이용한 혼합물의 미지성분비율 예측)

  • Lee Hye-Seon;Song Jae-Kee;Park Hae-Sang;Jun Chi-Hyuck
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.135-148
    • /
    • 2006
  • Independent component analysis (ICA) is a statistical method for transforming an observed high-dimensional multivariate data into statistically independent components. ICA has been applied increasingly in wide fields of spectrum application since ICA is able to extract unknown components of a mixture from spectra. We focus on application of ICA for separating independent sources and predicting each composition using extracted components. The theory of ICA is introduced and an application to a metal surface spectra data will be described, where subsequent analysis using non-negative least square method is performed to predict composition ratio of each sample. Furthermore, some simulation experiments are performed to demonstrate the performance of the proposed approach.

The Necessity of Independent Data Monitoring Committee in Domestic Clinical Trials (현재 국내임상시험에서 독립적 자료모니터링위원회의 필요성)

  • Kang, Seung-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.2
    • /
    • pp.317-327
    • /
    • 2009
  • In adaptive designs important components of clinical trials may be changed based on the results of interim analysis. Several international guidelines point out that such interim analysis should be performed by independent experts who do not participate in clinical trials when adaptive designs are used in therapeutic confirmatory clinical trials, and if not, it may cause bias. The international guidelines recommend the establishment of independent data monitoring committee for conducting interim analysis independently.

Comparison of several criteria for ordering independent components (독립성분의 순서화 방법 비교)

  • Choi, Eunbin;Cho, Sulim;Park, Mira
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.889-899
    • /
    • 2017
  • Independent component analysis is a multivariate approach to separate mixed signals into original signals. It is the most widely used method of blind source separation technique. ICA uses linear transformations such as principal component analysis and factor analysis, but differs in that ICA requires statistical independence and non-Gaussian assumptions of original signals. PCA have a natural ordering based on cumulative proportion of explained variance; howerver, ICA algorithms cannot identify the unique optimal ordering of the components. It is meaningful to set order because major components can be used for further analysis such as clustering and low-dimensional graphs. In this paper, we compare the performance of several criteria to determine the order of the components. Kurtosis, absolute value of kurtosis, negentropy, Kolmogorov-Smirnov statistic and sum of squared coefficients are considered. The criteria are evaluated by their ability to classify known groups. Two types of data are analyzed for illustration.

Separation of passive sonar target signals using frequency domain independent component analysis (주파수영역 독립성분분석을 이용한 수동소나 표적신호 분리)

  • Lee, Hojae;Seo, Iksu;Bae, Keunsung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.110-117
    • /
    • 2016
  • Passive sonar systems detect and classify the target by analyzing the radiated noises from vessels. If multiple noise sources exist within the sonar detection range, it gets difficult to classify each noise source because mixture of noise sources are observed. To overcome this problem, a beamforming technique is used to separate noise sources spatially though it has various limitations. In this paper, we propose a new method that uses a FDICA (Frequency Domain Independent Component Analysis) to separate noise sources from the mixture. For experiments, each noise source signal was synthesized by considering the features such as machinery tonal components and propeller tonal components. And the results of before and after separation were compared by using LOFAR (Low Frequency Analysis and Recording), DEMON (Detection Envelope Modulation On Noise) analysis.

Multivariate Time Series Simulation With Component Analysis (독립성분분석을 이용한 다변량 시계열 모의)

  • Lee, Tae-Sam;Salas, Jose D.;Karvanen, Juha;Noh, Jae-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.694-698
    • /
    • 2008
  • In hydrology, it is a difficult task to deal with multivariate time series such as modeling streamflows of an entire complex river system. Normal distribution based model such as MARMA (Multivariate Autorgressive Moving average) has been a major approach for modeling the multivariate time series. There are some limitations for the normal based models. One of them might be the unfavorable data-transformation forcing that the data follow the normal distribution. Furthermore, the high dimension multivariate model requires the very large parameter matrix. As an alternative, one might be decomposing the multivariate data into independent components and modeling it individually. In 1985, Lins used Principal Component Analysis (PCA). The five scores, the decomposed data from the original data, were taken and were formulated individually. The one of the five scores were modeled with AR-2 while the others are modeled with AR-1 model. From the time series analysis using the scores of the five components, he noted "principal component time series might provide a relatively simple and meaningful alternative to conventional large MARMA models". This study is inspired from the researcher's quote to develop a multivariate simulation model. The multivariate simulation model is suggested here using Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Three modeling step is applied for simulation. (1) PCA is used to decompose the correlated multivariate data into the uncorrelated data while ICA decomposes the data into independent components. Here, the autocorrelation structure of the decomposed data is still dominant, which is inherited from the data of the original domain. (2) Each component is resampled by block bootstrapping or K-nearest neighbor. (3) The resampled components bring back to original domain. From using the suggested approach one might expect that a) the simulated data are different with the historical data, b) no data transformation is required (in case of ICA), c) a complex system can be decomposed into independent component and modeled individually. The model with PCA and ICA are compared with the various statistics such as the basic statistics (mean, standard deviation, skewness, autocorrelation), and reservoir-related statistics, kernel density estimate.

  • PDF

ImprovementofMLLRAlgorithmforRapidSpeakerAdaptationandReductionofComputation (빠른 화자 적응과 연산량 감소를 위한 MLLR알고리즘 개선)

  • Kim, Ji-Un;Chung, Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.65-71
    • /
    • 2004
  • We improved the MLLR speaker adaptation algorithm with reduction of the order of HMM parameters using PCA(Principle Component Analysis) or ICA(Independent Component Analysis). To find a smaller set of variables with less redundancy, we adapt PCA(principal component analysis) and ICA(independent component analysis) that would give as good a representation as possible, minimize the correlations between data elements, and remove the axis with less covariance or higher-order statistical independencies. Ordinary MLLR algorithm needs more than 30 seconds adaptation data to represent higher word recognition rate of SD(Speaker Dependent) models than of SI(Speaker Independent) models, whereas proposed algorithm needs just more than 10 seconds adaptation data. 10 components for ICA and PCA represent similar performance with 36 components for ordinary MLLR framework. So, compared with ordinary MLLR algorithm, the amount of total computation requested in speaker adaptation is reduced by about 1/167 in proposed MLLR algorithm.

An Extensive Analysis of High-density Electroencephalogram during Semantic Decision of Visually Presented Words

  • Kim, Kyung-Hwan;Kim, Ja-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.4
    • /
    • pp.170-179
    • /
    • 2006
  • The purpose of this study was to investigate the spatiotemporal cortical activation pattern and functional connectivity during visual perception of words. 61 channel recordings of electroencephalogram were obtained from 15 subjects while they were judging the meaning of Korean, English, and Chinese words with concrete meanings. We examined event-related potentials (ERP) and applied independent component analysis (ICA) to find and separate simultaneously activated neural sources. Spectral analysis was also performed to investigate the gamma-band activity (GBA, 30-50 Hz) which is known to reflect feature binding. Five significant ERP components were identified and left hemispheric dominance was observed for most sites. Meaningful differences of amplitudes and latencies among languages were observed. It seemed that familiarity with each language and orthographic characteristics affected the characteristics of ERP components. ICA helped confirm several prominent sources corresponding to some ERP components. The results of spectral and time-frequency analyses showed distinct GBAs at prefrontal, frontal, and temporal sites. The GBAs at prefrontal and temporal sites were significantly correlated with the LPC amplitude and response time. The differences in spatiotemporal patterns of GBA among languages were not prominent compared to the inter-individual differences. The gamma-band coherence revealed short-range connectivity within frontal region and long-range connectivity between frontal, posterior, and temporal sites.