• 제목/요약/키워드: Independent Braking/Driving Force Control

검색결과 2건 처리시간 0.017초

6WS/6WD 차량의 독립조향 및 구동 제어알고리즘에 관한 연구 (A Study on Independent Steering & Driving Control Algorithm for 6WS/6WD Vehicle)

  • 김창준;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.313-320
    • /
    • 2011
  • Multi-axle driving vehicles that are used in special environments require high driving performance, steering performance, and stability. Among these vehicles, 6WS/6WD vehicles with middle wheels have structural safety by distributing the load and reducing the pitch angle during rapid acceleration and braking. 6WS/6WD vehicles are favored for military use in off road operations because of their high maneuverability and mobility on extreme terrains and obstacles. 6WD vehicles that using in-wheel motor can generate the independent wheel torque without other mechanical parts. Conventional vehicles, however, cannot generate an opposite driving force at each side wheel. Using an independent steering and driving system, six-wheel vehicles can show better performance than conventional vehicles. Using of independent steering and driving system, the 6 wheel vehicle can improve a performance better than conventional vehicle. This vehicle enhances the maneuverability under low speed and the stability at high speed. This paper describes an independent 6WS/6WD vehicle, consists of three parts; Vehicle Model, Control Algorithm for 6WS/6WD and Simulation. First, vehicle model is application of TruckSim software for 6WS and 6WD. Second, control algorithm describes the optimum tire force distribution method in view of energy saving. Last is simulation and verification.

인휠모터 구동차량의 승차감 및 자세제어를 위한 기초적 연구 (A Fundamental Study on the Control of Ride Comfort and Attitude for In-wheel Motor Vehicles)

  • 김영렬;박철;왕지남
    • 동력기계공학회지
    • /
    • 제16권1호
    • /
    • pp.91-97
    • /
    • 2012
  • It is being accelerated to develop environment-friendly vehicles to solve problems on the energy and environment of earth. The electric driving motor commonly installed in these vehicles has the excellent control capability such as fast response and accurate generation to torque control command. Especially, in-wheel motor has the additional merit such as independently driving each wheel in vehicle. Recently, being developed various control algorithm to enhance the safety and stability of vehicle motion using actively the merits of in-wheel motor. In addition to that, being issued the possibility of enhancing the ride comfort and attitude of vehicle motion such as pitching and rolling. In this paper, investigate the theoretical relationship between the braking/driving force and the motion of sprung mass of vehicle and propose the control method to enhance the ride comfort and attitude of vehicle motion. The proposed control method is proved through the simulation with vehicle model provided by TruckSim software which is commercial one and specializes in vehicle dynamics.