• Title/Summary/Keyword: Indentation force

Search Result 130, Processing Time 0.02 seconds

Crack Growth Retardation Effect and Metallographic Observation of Aluminum Alloy Plate with Pre-Indentation (예비압입에 의한 알루미늄 합금 판재의 균열성장 지연효과 및 금속조직 변화)

  • 황정선;조환기;윤용인
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.73-79
    • /
    • 2003
  • Fatigue test is conducted to see the effect of pre-indentation on the fatigue crack retardation of Al5052-H18 plate. Metallographic observation is introduced to deduce the relationship between fatigue crack retardation and fracture appearance with indentation. The grain size of the specimen becomes smaller with the increase of indentation force and the plastic zone is formed with the decrease of grain size. The fatigue striations are appeared densely as the Indentation force becomes higher. Metallographic observation and fatigue test results show that the indentation force has the limited value in improving fatigue crack retardation. Important point to retard the fatigue crack growth is that the crack growth path should pass through the indented area.

Study on the Elastic Characteristics of Living Cells using Atomic Force Microscope Indentation Technique

  • Kwon Eun-Young;Kim Young-Tae;Kim Dae-Eun
    • KSTLE International Journal
    • /
    • v.7 no.1
    • /
    • pp.10-13
    • /
    • 2006
  • In this work, imaging and study of elastic property of the living cell was performed. The motivation of this work was to seek the possibility of exploiting Young's modulus as a disease indicator using Atomic Force Microscope (AFM) and also to gain fundamental understanding of cell mechanics for applications in medical nanorobots of the future. L-929 fibroblast adherent cell was used as the sample. Imaging condition in cell culturing media environment was done in very low speed ($20{\mu}m/ s$) compared to that in the ambient environment. For measuring the Young's modulus of the living cell, AFM indentation method was used. From the force-distance curve obtained from the indentation experiment the Young's modulus could be derived using the Hertz model. The Young's modulus of living L-929 fibroblast cell was $1.29{\pm}0.2$ kPa.

A Study on the Optimum Welding Conditions for Reducing the Depth of Indentation of Surface in Spot Welding (점용접 시 압흔 깊이 감소를 위한 최적 용접조건 선정에 관한 연구)

  • 서승일;이재근;장상길;차병우
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.57-64
    • /
    • 1996
  • In this paper, authors are trying to find optimum spot weldig conditions to minimize indentation of the plate surface which is crucial to quality of stainless rolling stocks. At first, to derive a simple equation to estimate the depth of indentation, a simplified one-dimensional bar model is proposed and validity of the model is confirmed by experiments. And also, to find proper welding conditions giving satisfied tensile strength of the welded joint, a simple formula is derived referring to the standard spot welding conditions by AWS. Optimization problem is formulated to find welding conditions such as welding current, time and applied force which give minimum indentation and proper tensile strength of joint, and solutions are found out. According to the results, the depth of indentation can be expressed by applied electrode froces and it can be shown that an optimum applied force exists.

  • PDF

The Assessment of Structural Crashworthiness in Collision Using Double Skinned Structural Model (이중 선체 선박의 충돌 강도 해석)

  • 이경언;원석희;백점기;이제명;김철홍
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.71-76
    • /
    • 2004
  • To deal with ship collision or grounding, double hull structure has been applied to ships carrying dangerous cargoes. Studies about ability of double hull structure to absorb collision energy and determining fracture state are still under researching. In this study, commercial analysis code, LS-DYNA3D, is used to analyze collision strength of ships in various scenarios. 46K Chemical/Product Carrier is used as analysis subject ship. Study about Energy-Indentation and Force-Indentation is conducted under conditions that weight and collision velocity are changed. Results of this study are very helpful to make mechanism of collision accident clear and to supply useful information about collision strength criteria.

  • PDF

Prediction of Density Distribution in Sintered Metal Powder Compacts by Indentation Force Equation (압흔하중식에 의한 금속소결분말체내에서의 밀도분포 예측)

  • 박종진
    • Journal of Powder Materials
    • /
    • v.4 no.3
    • /
    • pp.188-195
    • /
    • 1997
  • In most of sintered metal powder compacts, the sintered density distribution is controlled to be as high and uniform as possible to ensure the required mechanical properties. In general, the density distribution in the compacts is not uniform and not easy to measure. In the present study, a method for measuring the density distribution was developed, based on the indentation force equation by which the hardness and the relative density were related. The indentation force equation, expressed as a function of strength constant, workhardening coefficient and relative density, was obtained by finite element analysis of rigid-ball indentation on sintered powder metal compacts. The present method was verified by comparing the predicted density distribution in the sintered Fe-0.5%C-2%Cu compacts with that obtained by experiments, in which the density distribution was directly measured by machining the compacts from the outer surface progressively.

  • PDF

A new prediction model of force evolution behavior of a conical pick by indentation tests

  • Xiang Wang;Ming S. Gao;Okan Su;Dan Huang
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.367-380
    • /
    • 2024
  • In this study, a prediction model for the cutting force evolution in brittle rocks was developed. This model is based on indentation tests using a conical pick at a cutting depth of 9 mm. The behavior of the indentation mechanism was analyzed in three phases by using Evans' cutting mode. The peak values in the force history identified these phases. The variation in the local strength of the rock caused a large offset in the model prediction of chipping. Regression analyses showed that there is a strong power relationship between the upper bound of the cutting force along with chipping and depth of cut. The slope of the three crushing phases has been found to increase sequentially (α123). In addition, a positive correlation existed between the Schmidt hardness and brittleness index that affects the lower and upper bounds of chipping. Consequently, the results clearly demonstrate that the new model can reasonably predict the evolution of the cutting force based on experimental data. These results would be beneficial for engineers to design and select the optimum excavation machine to reduce mechanical vibration and enhance cutting efficiency.

Measuring elastic modulus of bacterial biofilms in a liquid phase using atomic force microscopy

  • Kim, Yong-Min;Kwon, Tae-Hyuk;Kim, Seungchul
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.863-870
    • /
    • 2017
  • With the increasing interest in using bacterial biofilms in geo-engineering practices, such as soil improvement, sealing leakage in earth structures, and hydraulic barrier installation, understanding of the contribution of bacterial biofilm formation to mechanical and hydraulic behavior of soils is important. While mechanical properties of soft gel-like biofilms need to be identified for appropriate modeling and prediction of behaviors of biofilm-associated soils, elastic properties of biofilms remain poorly understood. Therefore, this study investigated the microscale Young's modulus of biofilms produced by Shewanella oneidensis MR-1 in a liquid phase. The indentation test was performed on a biofilm sample using the atomic force microscopy (AFM) with a spherical indentor, and the force-indentation responses were obtained during approach and retraction traces. Young's modulus of biofilms was estimated to be ~33-38 kPa from these force-indentation curves and Hertzian contact theory. It appears that the AFM indentation result captures the microscale local characteristics of biofilms and its stiffness is relatively large compared to the other methods, including rheometer and hydrodynamic shear tests, which reflect the average macro-scale behaviors. While modeling of mechanical behaviors of biofilm-associated soils requires the properties of each component, the obtained results provide information on the mechanical properties of biofilms that can be considered as cementing, gluing, or filling materials in soils.

Hardness Estimation of Compressor Journal for a Use of Instrumented Indentation Techniques (계장화 압입시험법을 이용한 차량용 컴프레서 저널 경도 평가)

  • Kwak, Sung-Jong;Jin, Ji-Won;Kim, Tae-Seong;Noh, Ki-Han;Kang, Ki-Weon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.376-381
    • /
    • 2012
  • This paper deals with application of instrumented indentation technique for quality inspection methodology for automobile component. For this, the instrumented indentation tests were performed the normal and cracked compressor journal, which is made from spheroidal graphite cast iron and utilized in air-conditioning system. And the Brinell hardness was estimated using the unloading slope and maximum indentation force. With the aid of Normal distribution, this Brinell hardness was statistically compared and analyzed with hardness measured by indentation hardness tests. Also, application possibility of reliability-based quality inspection criteria for compressor journal was evaluated through the probabilistic analysis for the Brinell hardness estimated by instrumented indentation technique.

A Study on the Weldability & Indentation Depth Evaluation of Electrochemical Galvanized Steel Sheet according to the Welding Conditions (전기아연도금 강판의 점용접성에 미치는 용접조건과 압흔깊이에 관한 연구)

  • 정영훈;허우진;백승세;권일현;양성모;유효선
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.162-164
    • /
    • 2003
  • Spot welding, a kind of electric resistance welding, has been used in many fields such as automobile, aircraft, and appliance industry. This paper is to investigate the relationship between tensile shear strength and indentation depth under various welding conditions. The tensile shear strength increases with increasing the welding current in the range of 6-l3kA. The optimum welding conditions were 200∼250kg welding force and 10∼15 cycles welding time at 9kA welding current for EZNCEN. The indentation depth for optimum welding condition was 0.6mm at 9kA welding curent and 200kg welding force, 0.17mm at 9kA welding current and 300kg welding force, 0.19mm at 9kA welding current and 10cycle, 0.17mm at 9kA welding current and 15cycle welding time, respectively.

  • PDF

A Study on Nano-Indentation for Ductile Materials Using FEA (유한요소해석을 이용한 연성재료의 나노인덴테이션에 관한 연구)

  • Han, S.W.;Lee, H.W.;Lee, H.J.;Ko, S.G.;Kim, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.246-251
    • /
    • 2004
  • Nano-indentation is used for measuring mechanical properties of thin films such as elastic modulus and hardness. For ductile materials, pile-up around the indenter causes the calculation of inaccurate projected contact area. This phenomenon was found by measurement of indentation shape using an atomic force microscope. In present study finite element analysis of nano-indentation was performed to compensate the effects of pile-up on the contact area. The result of finite element analysis was compared with that of nano-indentation for a ductile material. The analysis has demonstrated that the true contact area is greater than that calculated by nano-indentation. It is verified that the consideration of the effects of pile-up in nanoindentation for ductile materials using the finite element method is reasonable.

  • PDF