• Title/Summary/Keyword: Indel marker

Search Result 10, Processing Time 0.036 seconds

Polymorphisms and Allele Distribution of Novel Indel Markers in Jeju Black Cattle, Hanwoo and Imported Cattle Breeds (제주흑우, 한우 및 수입 소 품종에서 새로운 indel 마커의 다형성과 대립인자 분포)

  • Han, Sang-Hyun;Kim, Jae-Hwan;Cho, In-Cheol;Cho, Sang-Rae;Cho, Won-Mo;Kim, Sang-Geum;Kim, Yoo-Kyung;Kang, Yong-Jun;Park, Yong-Sang;Kim, Young-Hoon;Park, Se-Phil;Kim, Eun-Young;Lee, Sung-Soo;Ko, Moon-Suck
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1644-1650
    • /
    • 2012
  • The aim of this study was to screen the polymorphisms and distribution of each genotype of insertion/ deletion (indel) markers which were found in a preliminary comparative study of bovine genomic sequence databases. Comparative bioinformatic analyses were first performed between the nucleotide sequences of Bovine Genome Project and those of expressed sequence tag (EST) database, and a total of fifty-one species of indel markers were screened. Of these, forty-two indel markers were evaluated, and nine informative indel markers were ultimately selected for population analysis. Nucleotide sequences of each marker were re-sequenced and their polymorphic patterns were typed in six cattle breeds: Holstein, Angus, Charolais, Hereford, and two Korean native cattle breeds (Hanwoo and Jeju Black cattle). Cattle breeds tested in this study showed polymorphic patterns in eight indel markers but not in the Indel-15 marker in Charolais and Holstein. The results of analysis for Jeju Black cattle (JBC) population indicated an observed heterozygosity (Ho) that was highest in HW_G1 (0.600) and the lowest in Indel_29 (0.274). The PIC value was the highest in HW_G4 (0.373) and lowest in Indel_6 (0.305). These polymorphic indel markers will be useful in supplying genetic information for parentage tests and traceability and to develop a molecular breeding system for improvement of animal production in cattle breeds as well as in the JBC population.

A Parentage Test using Indel, Microsatellite Markers and Genotypes of MC1R in the Jeju Black Cattle Population (제주 흑우 집단에서 Indel, Microsatellite 마커와 MC1R 유전자형을 이용한 친자 확인)

  • Han, Sang Hyun;Cho, Sang-Rae;Cho, In-Cheol;Cho, Won-Mo;Kim, Sang-Geum;Yang, Sung-Nyun;Kang, Yong-Jun;Park, Yong-Sang;Kim, Young-Hoon;Park, Se-Phil;Kim, Eun-Young;Lee, Sung-Soo;Ko, Moon-Suck
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.207-213
    • /
    • 2013
  • This study was carried out to examine a molecular marker system for parentage test in Jeju Black cattle (JBC). Based on the preliminarily studies, we finally selected for construction of a novel genetic marker system for molecular traceability, identity test, breed certification, and parentage test in JBC and its related industrial populations. The genetic marker system had eight MS markers, five indel markers, and two single nucleotide polymorphisms (SNPs; g.G299T and g.del310G) within MC1R gene which is critical to verify the breed specific genotypes for coat color of JBC differing from those of exotic black cattle breeds such as Holstein and Angus. The results showed lower level of a combined non-exclusion probability for second parent (NE-P2) of $4.1202{\times}10^{-4}$ than those previously recommended by International Society of Animal Genetics (ISAG) of $5.000{\times}10^{-4}$ for parentage, and a combined non-exclusion probability for sib identity (NE-SI) of $2.679{\times}10^{-5}$. Parentage analysis has been successfully identified the JBC offspring in the indigenous population and cattle farms used the certified AI semens for production using the JBC-derived offspring for commercial beef. This combined molecular marker system will be helpful to supply genetic information for parentage test and traceability and to develop the molecular breeding system for improvement of animal productivity in JBC population.

Confirmation of genotypic effects for the bovine APM1 gene on marbling in Hanwoo cattle

  • Kwon, Anam;Srikanth, Krishnamoorthy;Lee, Eunjin;Kim, Seonkwan;Chung, Hoyoung
    • Journal of Animal Science and Technology
    • /
    • v.58 no.4
    • /
    • pp.15.1-15.6
    • /
    • 2016
  • Background: Our previous study had identified the SNP (g.81966377T > C) and indel (g.81966364D > I) located in the promoter of APM1 to have a significant effect on marbling in Hanwoo. APM1 encodes an adipocytokine called adiponectin, which plays a significant role in lipogenesis. The aim of this study was to verify and validate the effect of the SNP and indel on marbling and other carcass traits in a large, representative, countrywide population of Hanwoo cattle. The carcass traits measured were marbling (MAR), backfat thickness (BFT), loin eye area (LEA), and carcass weight (CAW). Results: Primers were designed to amplify 346 bp of the genomic segment that contained the targeted SNP (g.81966377) and the indel (g.81966364). After data curation, the genotypes of 8,378 individuals identified using direct sequencing analysis estimated frequencies for C (0.686) and T (0.314) respectively showing genotype frequencies for CC (0.470), CT (0.430) and TT (0.098). The genotypes were significantly associated with MAR, BFT and LEA. The indel had significant effect on marbling (P < .0001) with strong additive genetic effects. The allele frequencies was estimated at (DEL, 0.864) and insertion (INS, 0.136) presenting genotypes of D/D (75.63 %), D/I (21.44 %), and I/I (2.92 %). Significant departure from Hardy-Weinberg equilibrium was not detected for both the SNP and the indel. Conclusion: The SNP genotypes showed significant association with MAR, BFT and LEA with strong additive genetic effects, while the indel was significantly associated with MAR. The results confirmed that the variants can be used as a genetic marker for improving marbling in Hanwoo.

Identification of Nicotiana tabacum Cultivars using Molecular Markers

  • Um, Yu-Rry;Cho, Eun-Jeong;Shin, Ha-Jeong;Kim, Ho-Bang;Seok, Yeong-Seon;Kim, Kwan-Suk;Lee, Yi
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.30 no.2
    • /
    • pp.85-93
    • /
    • 2008
  • This report describes a set of seven informative single-nucleotide polymorphisms (SNPs) and one insertion-deletion (INDEL) distributed over 24 cultivars that can be used for tobacco (Nicotiana tabacum L.) cultivar identification. We analyzed 163,000 genomic DNA sequences downloaded from Tobacco Genome Initiative database and assembled 31,370 contigs and 60,000 singletons. Using relatively long contigs, we designed primer sets for PCR amplification. We amplified 61 loci from 24 cultivars and sequenced the PCR products. We found seven significant SNPs and one INDEL among the sequences and we classified the 24 cultivars into 10 groups. SNP frequency of tobacco, 1/8,380 bp, was very low in comparison with those of other plant species, between 1/46 bp and 1/336 bp. For exact identification of tobacco cultivars, many more SNP markers should be developed. This study is the first attempt to identify tobacco cultivars using SNP markers.

Fine Mapping of Zenith Derived Rice Stripe Virus Resistance Gene, Stv-b

  • Sais-Beul Lee;Jun-Hyun Cho;Nkulu Rolly Kabange;Sumin Jo;Ji-Yoon Lee;Yeongho Kwon;Ju-Won Kang;Dongjin Shin;Jong-Hee Lee;You-Cheon Song;Jong-Min Ko;Dong-Soo Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.63-63
    • /
    • 2020
  • Rice stripe virus (RSV) disease is one of the major constraints in rice production, transmitted by the small brown planthopper (SBPH; Laodelphax striatellus). Upon RSV infection, plants develop typical symptoms, which include chlorosis and weakness of newly emerged leaves, white and yellow spots, stripe on leaves, and necrotic and wilting leaves, resulting in plant growth inhibition, oxidative damage that may culminate in programmed cell death (PCD) and plant death in severe epidemics. Although RSV-resistant quantitative trait loci (QTLs), Stv-a, Stv-b, and Stv-bi, were mapped using various resistant varieties, one RSV-resistant gene, OsSOT1, has been identified so far. In this study, we used the rice cultivar Zenith, known to carry Stv-b, to investigate novel RSV-genes through fine mapping. Therefore, we crossed Zenith (Donor parent, RSV resistant) with Ilpum (Recurrent parent, RSV susceptible) to fine-map using a BC2F2 population of 2100 plants. Chromosome segment introgression lines that were heterozygous at a different region were selected, two types of heterozygous lines showed an heterozygous genotype between Sid2 and Sid75 to Indel9 and RM6680. Interestingly, we identified qSTV11Z region harboring Stv-b, covering about 171-kb region between the InDel markers Sid75 and Indel8. The localization of qSTV11Z provides useful information that could be used for marker-assisted selection and determination of genetic resources in rice breeding.

  • PDF

Development and Validation of Single Nucleotide Polymorphism (SNP) Markers from an Expressed Sequence Tag (EST) Database in Olive Flounder (Paralichthys olivaceus)

  • Kim, Jung Eun;Lee, Young Mee;Lee, Jeong-Ho;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Kim, Kyung-Kil
    • Development and Reproduction
    • /
    • v.18 no.4
    • /
    • pp.275-286
    • /
    • 2014
  • To successful molecular breeding, identification and functional characterization of breeding related genes and development of molecular breeding techniques using DNA markers are essential. Although the development of a useful marker is difficult in the aspect of time, cost and effort, many markers are being developed to be used in molecular breeding and developed markers have been used in many fields. Single nucleotide polymorphisms (SNPs) markers were widely used for genomic research and breeding, but has hardly been validated for screening functional genes in olive flounder. We identified single nucleotide polymorphisms (SNPs) from expressed sequence tag (EST) database in olive flounder; out of a total 4,327 ESTs, 693 contigs and 514 SNPs were detected in total EST, and these substitutions include 297 transitions and 217 transversions. As a result, 144 SNP markers were developed on the basis of 514 SNP to selection of useful gene region, and then applied to each of eight wild and culture olive flounder (total 16 samples). In our experimental result, only 32 markers had detected polymorphism in sample, also identified 21 transitions and 11 transversions, whereas indel was not detected in polymorphic SNPs. Heterozygosity of wild and cultured olive flounder using the 32 SNP markers is 0.34 and 0.29, respectively. In conclusion, we identified SNP and polymorphism in olive flounder using newly designed marker, it supports that developed markers are suitable for SNP detection and diversity analysis in olive flounder. The outcome of this study can be basic data for researches for immunity gene and characteristic with SNP.

Utility of Selected Non-coding Chloroplast DNA Sequences for Lineage Assessment of Musa Interspecific Hybrids

  • Swangpol, Sasivimon;Volkaert, Hugo;Sotto, Rachel C.;Seelanan, Tosak
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.577-587
    • /
    • 2007
  • Single-copy chloroplast loci are used widely to infer phylogenetic relationship at different taxonomic levels among various groups of plants. To test the utility of chloroplast loci and to provide additional data applicable to hybrid evolution in Musa, we sequenced two introns, rpl16 and ndhA, and two intergenic spacers, psaA-ycf3 and petA-psbJ-psbL-psbF and combined these data. Using these four regions, Musa acuminata Cola(A)- and M. balbisiana Colla (B)-containing genomes were clearly distinguished. Some triploid interspecific hybrids contain A-type chloroplasts (the AAB/ABB) while others contain B-type chloroplasts (the BBA/BBB). The chloroplasts of all cultivars in 'Namwa' (BBA) group came from the same wild maternal origin, but the specific parents are still unrevealed. Though, average sequence divergences in each region were little (less than 2%), we propose that petA-psbJ intergenic spacer could be developed for diversity assessment within each genome. This segment contains three single nucleotide polymorphisms (SNPs) and two indels which could distinguish diversity within A genome whereas this same region also contains one SNP and an indel which could categorize B genome. However, an inverted repeat region which could form hairpin structure was detected in this spacer and thus was omitted from the analyses due to their incongruence to other regions. Until thoroughly identified in other members of Musaceae and Zingiberales clade, utility of this inverted repeat as phylogenetic marker in these taxa are cautioned.

Development of Cleaved Amplified Polymorphic Sequence Markers of Lentinula edodes Cultivars Sanbaekhyang and Sulbaekhyang (표고 품종 산백향과 설백향 구분을 위한 CAPS 마커 개발)

  • Moon, Suyun;Hong, Chang Pyo;Ryu, Hojin;Lee, Hwa-Yong
    • The Korean Journal of Mycology
    • /
    • v.49 no.1
    • /
    • pp.33-44
    • /
    • 2021
  • Lentinula edodes (Berk.) Pegler, the most produced mushroom in the world, is an edible mushroom with very high nutritional and pharmacological value. Currently, interest in the protection of genetic resources is increasing worldwide, and securing the distinction between new cultivars is very important. Therefore, the development of efficient molecular markers that can discriminate between L. edodes cultivars is required. In this study, we developed cleaved amplified polymorphic sequence (CAPS) markers for the identification of L. edodes cultivars (Sanbaekhyang and Sulbaekhyang). These markers were developed from whole genome sequencing data from L. edodes monokaryon strain B17 and resequencing data from 40 cultivars. A nucleotide deletion existed in scaffold 19 POS 214449 in Sanbaekhyang (GT→G), and a single nucleotide polymorphism changed in scaffold 7 POS 215801 in Sulbaekhyang (G→A). The restriction enzymes Hha I and HpyCH4IV distinguished Sanbaekhyang and Sulbaekhyang, respectively, from other cultivars. Thus, we developed two CAPS markers for the identification of the L. edodes cultivars Sanbaekhyang and Sulbaekhyang.

Development of HRM Markers Based on Identification of SNPs from Next-Generation Sequencing of Sanguisorba officinalis, Sanguisorba tenuifolia f. alba (Trautv. & Mey.) Kitam and Sanguisorba tenuifolia Fisch. ex Link (오이풀, 흰오이풀, 긴오이풀의 NGS 기반 유전체 서열의 완전 해독 및 차세대 염기서열 재분석으로 탐색된 SNP 기반 HRM 분자표지 개발)

  • Sim, Mi-Ok;Jang, Ji Hun;Jung, Ho-Kyung;Hwang, Taeyeon;Kim, Sunyoung;Cho, Hyun-Woo
    • The Korea Journal of Herbology
    • /
    • v.34 no.6
    • /
    • pp.91-97
    • /
    • 2019
  • Objective : To establish a reliable tool between for the distinction of original plants of Sanguisorbae Radix, we analyzed the complete chloroplast genome sequence of Sanguisorbae Radix and identified single nucleotide polymorphisms (SNPs). Materials and methods : The chloroplast genome sequence of Sanguisorba officinalis, Sanguisorba tenuifolia f. alba (Trautv. & Mey.) Kitam and Sanguisorba tenuifolia Fisch. ex Link obtained using next-generation sequencing technology were described and compared with those of other species to develop specific markers. Candidate genetic markers were identified to distinguish species from the chloroplast sequences of each species using Modified Phred Phrap Consed and CLC Genomics Workbench programs. Results : The structure of the chloroplast genome of each sample that had been assembled and verified was circular, and the length was about 155 kbp. Through comparative analysis of the chloroplast sequences, we found 220 nucleotides, 158 SNPs, and 62 Indel (insertion and/or deletion), to distinguish Sanguisorba officinalis, Sanguisorba tenuifolia f. alba (Trautv. & Mey.) Kitam and Sanguisorba tenuifolia Fisch. ex Link. Finally, 15 specific SNP genetic markers were selected for the verification at positions. Avaliable primers for the dried herb, which is used as medicine, were used to develop the PCR amplification product of Sanguisorbae Radix to assess the applicability of PCR analysis. Conclusion : In this study, we found that Fendel-qPCR analysis based on the chloroplast DNA sequences can be an efficient tool for discrimination of Sanguisorba officinalis, Sanguisorba tenuifolia f. alba (Trautv. & Mey.) Kitam and Sanguisorba tenuifolia Fisch. ex Link.

Current status and prospects of citrus genomics (감귤 유전체 연구 동향 및 전망)

  • Kim, Ho Bang;Lim, Sanghyun;Kim, Jae Joon;Park, Young Cheol;Yun, Su-Hyun;Song, Kwan Jeong
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.326-335
    • /
    • 2015
  • Citrus is an economically important fruit tree with the largest amount of fruit production in the world. It provides important nutrition such as vitamin C and other health-promoting compounds including its unique flavonoids for human health. However, it is classified into the most difficult crops to develop new cultivars through conventional breeding approaches due to its long juvenility and some unique reproductive biological features such as gamete sterility, nucellar embryony, and high level of heterozygosity. Due to global warming and changes in consumer trends, establishing a systematic and efficient breeding programs is highly required for sustainable production of high quality fruits and diversification of cultivars. Recently, reference genome sequences of sweet orange and clementine mandarin have been released. Based on the reference whole-genome sequences, comparative genomics, reference-guided resequencing, and genotyping-by-sequencing for various citrus cultivars and crosses could be performed for the advance of functional genomics and development of traits-related molecular markers. In addition, a full understanding of gene function and gene co-expression networks can be provided through combined analysis of various transcriptome data. Analytic information on whole-genome and transcriptome will provide massive data on polymorphic molecular markers such as SNP, INDEL, and SSR, suggesting that it is possible to construct integrated maps and high-density genetic maps as well as physical maps. In the near future, integrated maps will be useful for map-based precise cloning of genes that are specific to citrus with major agronomic traits to facilitate rapid and efficient marker-assisted selection.