• Title/Summary/Keyword: Incremental Updating

Search Result 34, Processing Time 0.018 seconds

Improving Naïve Bayes Text Classifiers with Incremental Feature Weighting (점진적 특징 가중치 기법을 이용한 나이브 베이즈 문서분류기의 성능 개선)

  • Kim, Han-Joon;Chang, Jae-Young
    • The KIPS Transactions:PartB
    • /
    • v.15B no.5
    • /
    • pp.457-464
    • /
    • 2008
  • In the real-world operational environment, most of text classification systems have the problems of insufficient training documents and no prior knowledge of feature space. In this regard, $Na{\ddot{i}ve$ Bayes is known to be an appropriate algorithm of operational text classification since the classification model can be evolved easily by incrementally updating its pre-learned classification model and feature space. This paper proposes the improving technique of $Na{\ddot{i}ve$ Bayes classifier through feature weighting strategy. The basic idea is that parameter estimation of $Na{\ddot{i}ve$ Bayes considers the degree of feature importance as well as feature distribution. We can develop a more accurate classification model by incorporating feature weights into Naive Bayes learning algorithm, not performing a learning process with a reduced feature set. In addition, we have extended a conventional feature update algorithm for incremental feature weighting in a dynamic operational environment. To evaluate the proposed method, we perform the experiments using the various document collections, and show that the traditional $Na{\ddot{i}ve$ Bayes classifier can be significantly improved by the proposed technique.

The Strategic Ambidexterity of Online Game Companies: The Exploitation and Exploration of NCsoft (온라인 게임회사의 전략적 양면성: 엔씨소프트의 활용과 탐험)

  • Bae, Joonheui;Koo, Dong Mo
    • Journal of Korea Game Society
    • /
    • v.15 no.1
    • /
    • pp.115-124
    • /
    • 2015
  • This research analyzed the case of Ncsoft to study the organizational learning, exploitation and exploration that create dynamic capability in hypercompetitive environment. First of all, we demonstrated the activities of exploitation and exploration in Ncsoft according to the life cycle of online game industry. An exploitation related to routine, learning and fit with existing environment brings about incremental innovation. In contrast, an exploration associated with non-learning, flexibility with changing environment results in radical innovation. We examined them based on the life cycle of its various game services. NCsoft that built the leading position in online game industry focused the exploitation activities at the stage of beginning period and growth, whereas NCsoft has increased the activities of exploration at period of mature. In addition, the firm conducts an exploration for its brand new game services and R&D. Conversely, An exploitation is conducted for sustainable updating of patch service and marketing and system building. The result implies that online game companies create sustainable competitive advantage using the balance between exploitation and exploration.

Real-time Classification of Internet Application Traffic using a Hierarchical Multi-class SVM

  • Yu, Jae-Hak;Lee, Han-Sung;Im, Young-Hee;Kim, Myung-Sup;Park, Dai-Hee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.859-876
    • /
    • 2010
  • In this paper, we propose a hierarchical application traffic classification system as an alternative means to overcome the limitations of the port number and payload based methodologies, which are traditionally considered traffic classification methods. The proposed system is a new classification model that hierarchically combines a binary classifier SVM and Support Vector Data Descriptions (SVDDs). The proposed system selects an optimal attribute subset from the bi-directional traffic flows generated by our traffic analysis system (KU-MON) that enables real-time collection and analysis of campus traffic. The system is composed of three layers: The first layer is a binary classifier SVM that performs rapid classification between P2P and non-P2P traffic. The second layer classifies P2P traffic into file-sharing, messenger and TV, based on three SVDDs. The third layer performs specialized classification of all individual application traffic types. Since the proposed system enables both coarse- and fine-grained classification, it can guarantee efficient resource management, such as a stable network environment, seamless bandwidth guarantee and appropriate QoS. Moreover, even when a new application emerges, it can be easily adapted for incremental updating and scaling. Only additional training for the new part of the application traffic is needed instead of retraining the entire system. The performance of the proposed system is validated via experiments which confirm that its recall and precision measures are satisfactory.

Hierarchical Internet Application Traffic Classification using a Multi-class SVM (다중 클래스 SVM을 이용한 계층적 인터넷 애플리케이션 트래픽의 분류)

  • Yu, Jae-Hak;Lee, Han-Sung;Im, Young-Hee;Kim, Myung-Sup;Park, Dai-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.7-14
    • /
    • 2010
  • In this paper, we introduce a hierarchical internet application traffic classification system based on SVM as an alternative overcoming the uppermost limit of the conventional methodology which is using the port number or payload information. After selecting an optimal attribute subset of the bidirectional traffic flow data collected from the campus, the proposed system classifies the internet application traffic hierarchically. The system is composed of three layers: the first layer quickly determines P2P traffic and non-P2P traffic using a SVM, the second layer classifies P2P traffics into file-sharing, messenger, and TV, based on three SVDDs. The third layer makes specific classification of the entire 16 application traffics. By classifying the internet application traffic finely or coarsely, the proposed system can guarantee an efficient system resource management, a stable network environment, a seamless bandwidth, and an appropriate QoS. Also, even a new application traffic is added, it is possible to have a system incremental updating and scalability by training only a new SVDD without retraining the whole system. We validate the performance of our approach with computer experiments.