• Title/Summary/Keyword: Increasing rate of temperature

Search Result 2,155, Processing Time 0.026 seconds

Electrical Characteristics of HIS Tube Depending on Processing Parameters (공정변수에 따른 초전도 튜브의 전기적 특성)

  • Park, Chi-Wan;Jang, Gun-Eik;Ha, Dong-Woo;Seung, Tae-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.468-472
    • /
    • 2005
  • High-temperature Superconductor(HTS) tubes were fabricated in term of different processing variables such as preheating temperature, speed of mold rotation and cooling rate by centrigugal forming method. For powder melting by induction the optimum range of melting temperatures and preheating temperature were $1050{\circ}C{\sim}1100{\circ}C\;and\;550{\circ}C\;for\;30\; min$, respectively The mould roating speed was 1000 rpm. A tube was annealed at $840 {\circ}C$ for 72 hours in oxygen atmosphere. The plate-like grains were well developed along the loafing direction and typical grain size was about more than $40{\mu}$. It was found that Ic values increased with increasing the Preheating temperature and speed of mold rotation. While Ic decreased with increasing the cooling rate. The measured Ic in $50mm{\times}70mm{\times}2.5mm$ tube was about 896 Amp.

공정변수에 따른 초전도 튜브의 전기적 특성변화

  • Park, C.W.;Jang, G.E.;Ha, D.W.;Seung, T.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.73-76
    • /
    • 2004
  • High-temperature Superconductor(HTS) tubes were fabricated in term of different processing variables such as preheating temperature, speed of mold rotation and cooling rate by centrifugal forming method. For powder melting by induction the optimum range of melting temperatures and preheating temperature were $1050^{\circ}C{\sim}1100^{\circ}C$ and $550^{\circ}C$ for 30min, respectively. The mould roating speed was 1000rpm. A tube was annealed at $840^{\circ}C$ for 72hours in oxygen atmosphere. The plate-like grains were well developed along the roating direction and typical grain size was about more than $40{\mu}m$. It was found that Ic values increased with increasing the preheating temperature and speed of mold rotation. While Ic decreased with increasing the cooling rate. The measured Ic in $50mm{\times}70mm{\times}2.5mm$ tube was about 896Amp.

  • PDF

Ultrasonic Characterization of Fluid Mud: Effect of Temperature (부유퇴적물의 초음파 특징: 온도의 효과)

  • Kim, Gil-Young;Kim, Dae-Choul;Kim, Jeong-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4E
    • /
    • pp.140-145
    • /
    • 2004
  • A laboratory study was carried out to investigate the change of ultrasonic velocity as a function of temperature for fluid mud (i.e., suspension). Pulse transmission technique with ultrasonic wave was used for ultrasonic velocity measurement. The five samples for fluid mud were prepared for concentration range of $30.6{\%}\;(1.24\;g/cm^{3}\;in\;density),\;23.3{\%}\;(1.19\;g/cm^{3}),\;11.5{\%}(1.10\;g/cm^{3}),\;7.8{\%}\;(1.08\;g/cm^{3}),\;and\;3.8{\%}\;(1.05\;g/cm^{3})$ by weight. The ultrasonic velocity in fluid mud was investigated to increase $(approximately\;2.83\;to\;4.95\;m/s/^{\circ}C)$ with increasing temperature, due to the effect of viscosity and compressibility of water with changing temperature. But the increasing rate tends to decrease at temperature higher than $30^{\circ}C,$ caused by the effect of viscosity. The concentration of fluid mud more affect to the ultrasonic velocity at higher temperature range than that at lower temperature. Overall the temperature effect on the ultrasonic velocity in fluid mud was a similar rate as for distilled water and seawater, suggesting fluid mud significantly depends on the behavior of water.

Mating Call Structure and Variation of the Frog Rana nigromaculata (참개구리(Rana nigromaculata)의 짝짓기 소리의 구조와 변이)

  • 박시룡;양서영
    • The Korean Journal of Ecology
    • /
    • v.20 no.6
    • /
    • pp.423-438
    • /
    • 1997
  • The structure and variation of the mating call in Rana nigromaculata was studied in a population at Da-rak, Chong-won, Chung-buk (36$\circ$ 37' latitude, 127$\circ$ 21' longitude) in Korea. The mating call consists of 3 to 8 pulse groups divided by clear silent intervals. Each pulse group is also composed of fine pulses. Temperature and body size affect the temporal and spectral characteristics of the mating call. Pulse, pulse group repetition rate and dominant frequency rise with increasing temperature, whereas pulse grouprepetition rate and dominant frequency decrease with increasing body size. A playback experiment was designed to establish the effect of a potential intruder on male calling. During the stimulus periods, resident males markedly decreased the pulse repetition rate, and icreased the rate of pulse groups, dominant frequency, and the number of call groups. This results indicate that this species responds in a graded fashion when interacting with other individuals.

  • PDF

Structural and Electrical Characteristics of MZO Thin Films Deposited at Different Substrate Temperature and Hydrogen Flow Rate (증착 온도 및 수소 유량에 따른 MZO 박막의 구조적 및 전기적 특성)

  • Lee, Jisu;Lee, Kyu Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.6-11
    • /
    • 2018
  • In this study, we have studied the effect of substrate temperature and hydrogen flow rate on the characteristics of MZO thin films for the TCO(Transparent conducting oxide). MZO thin films were deposited by RF magnetron sputtering at room temperature and $100^{\circ}C$ with various $H_2$ flow rate(1sccm~4sccm). In order to investigate the effect of hydrogen gas flow rate on the MZo thin film, we experimented with changing the hydrogen in argon mixing gas flow rate from 1.0sccm to 4.0sccm. MZO thin films deposited at room temperature and $100^{\circ}C$ show crystalline structure having (002), (103) preferential orientation. The electrical resistivity of the MZO films deposited at $100^{\circ}C$ was lower than that of the MZO film deposited at room temperature. The decrease of electrical resistivity with increasing substrate temperature was interpreted in terms of the increase of the charge carrier mobility and carrier concentration which seems to be due to the oxygen vacancy generated by the reducing atmosphere in the gas. The average transmittance of the MZO films deposited at room temperature and $100^{\circ}C$ with various hydrogen gas flow was more than 80%.

Effects of Oxidation and Hot Corrosion on the Erosion of Silicon Nitride

  • Kim, Jong Jip
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.136-139
    • /
    • 2005
  • The effect of oxidation and hot corrosion on the solid particle erosion was investigated for hot-pressed silicon nitride using as-polished, pre-oxidized and pre-corroded specimens by molten sodium sulfates. Erosion tests were performed at 22, 500 and $900^{\circ}C$ using angular silicon carbide particles of mean diameter $100{\mu}m$. Experimental results show that solid particle erosion rate of silicon nitride increases with increasing temperature for as-polished or pre-oxidized specimens in consistent with the prediction of a theoretical model. Erosion rate of pre-oxidized specimens is lower than that of as-polished specimens at $22^{\circ}C$, but it is higher at $900^{\circ}C$. Lower erosion rate at $22^{\circ}C$ in the pre-oxidized specimens is attributed due to the blunting of surface flaws, and the higher erosion rate at $900^{\circ}C$ is due to brittle lateral cracking. Erosion rate of pre-corroded specimens decreases with increasing temperature. Less erosion at $900^{\circ}C$ than at $22^{\circ}C$ is associated with the liquid corrosion products sealing off pores at $900^{\circ}C$ and the absence of inter-granular crack propagation observed at $22^{\circ}C$.

A Study on the Lubrication Flow Distribution in a Six-speed Automatic Transmission Valve Body (6속 자동변속기 밸브바디의 윤활오일유량 분배 특성 연구)

  • Kim, Jin-Yong;Na, Byung-Chul;Lee, Kye-Cheul
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.79-84
    • /
    • 2011
  • In general, a valve body of the automatic transmission(AT) is controlled by the clutch, the brake and lubricating oil flow in a hydraulic system and lubricant flow for each valve can be adjusted independently. To increase the lifetime of AT, the lubrication flow rate in a valve body for a 6 speed AT based parallel hybrid electric vehicle must be provided with proper oil distribution and control. In this study, we carried out several experiments without the inner parts of AT and with a AT assembly. The variation of the flow rate on oil temperature and pressure between an oil supply port and the outlets of the lubrication port was evaluated and analyzed. In the case of AT without the inner parts, it was evident that as the oil required for an operation of the clutch and brake was discharged from the outlet port, the flow rate from each lubrication port is decreased. However, the flow rate of the AT assembly was slightly increased. In addition, the lubrication flow rate was increased with increasing the oil temperature, and also it was reduced with increasing the oil pressure. Details of the resulting data are discussed.

Characteristics of Tensile Deformation and Shape Recovery with Transformation Temperature Change in a Ni-Ti Alloy Wire (Ni-Ti계 합금 선재의 변태온도 변화에 따른 인장변형 및 회복 특성)

  • Choi, Y.G.;Kim, M.S.;Cho, W.S.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.6
    • /
    • pp.307-313
    • /
    • 2008
  • The tensile deformation and shape recovery behaviors were studied in Ni-Ti shape memory wires showing different transformation characteristics by annealing at $200{\sim}600^{\circ}C$. Both R phase ${\rightarrow}$ B19' martensitic transformation at lower temperature and B2 ${\rightarrow}$ R phase transformation at higher temperature occurred in the shape memory wires annealed at $200{\sim}500^{\circ}C$. Transformation temperature and heat flow of B19' martensite increase but those of R phase main almost constant even with increasing annealing temperature. In the case of wires annealed and then cooled to $20^{\circ}C$, plateau on stress-strain curves in tensile testing can be observed due to the collapse of R phase variants and the formation of deformation-induced B19' martensite. In the case of wires annealed and then cooled to $-196^{\circ}C$, however, plateau on stress-strain curves does not appear and stress increases steadily with increasing tensile deformation. Comparing shape recovery rate with cooling temperature after annealing, shape recovery rate of the wire cooled to $20^{\circ}C$ is higher than that of the wire cooled to $-196^{\circ}C$ after annealing, and maximum shape recovery rate of 95% appears in the wire annealed at $400^{\circ}C$ and then cooled to $20^{\circ}C$. $R_s$ and $R_f$ temperatures measured during shape recovery tests are higher than $A_s$ and $A_f$ temperatures measured by DSC tests even at the same annealing temperature.

Evaluation of Mechanical Properties of AZ31B for Sheet Metal Forming at Warm and High Temperature (온간, 열간 판재 성형을 위한 AZ31B의 기계적 성질 평가)

  • Choo D. K.;Kim W. Y.;Lee J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.256-259
    • /
    • 2004
  • In the present study, AZ31B sheets has a bad formability in room temperature, but the formability is improved significantly as increasing the temperature because of rolled magnesium alloy sheet has a hexagonal closed packed structure (HCP) and a plastic anisotropy. In this paper, after tensile test in various temperatures, strain rate, show the tensile mechanical properties, yield and ultimate strength, K-value, work hardening exponent(n), strain rate sensitivity(m). As temperature increased, yield, ultimate strength and K-value, work hardening exponent(n) are decreased but strain rate sensitivity(m) is increased. As cross-head-speed increased, yield, ultimate strength and K-value, work hardening exponent(n) are increased. And according to the temperature, how change the plastic anisotropy factor R. In addition, we observed how temperatures and cross-head-speed effect on microstructure.

  • PDF

Evaluation of Mechanical Properties for Magnesium Sheet Forming by Tension and Compression Tests (마그네슘 판재성형을 위한 인장 및 압축실험을 통한 기계적 물성 평가)

  • Oh, S. W.;Choo, D. K.;Lee, J. H.;Kang, C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.635-641
    • /
    • 2005
  • The crystal structure of magnesium was hexagonal close-packed (HCP), so its formability was poor at room temperature. But formability was improved in high temperature with increasing of the slip planes. Purpose of this paper was to know about the mechanical properties of magnesium alloy (AZ31B), before warm and hot forming process. The mechanical properties were defined by the tension and compression tests in various temperature and strain-rate. As the temperature was increased, yield·ultimate strength, K-value, work hardening exponent (n) and anisotropy factor (R) were decreased. But strain rate sensitivity (m) was increased. As strain-rate increased, yield·ultimate strength, K-value, and work hardening exponent (n) were increased. Also, microstructures of grains fined away at high strain-rate. These results would be used in simulations and manufacturing factor fer warm and hot forming process.