• 제목/요약/키워드: Increasing rate of temperature

검색결과 2,165건 처리시간 0.032초

Changes in Skin Temperature and Physiological Reactions in Murrah Buffalo During Solar Exposure in Summer

  • Das, S.K.;Upadhyay, R.C.;Madan, M.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제10권5호
    • /
    • pp.478-483
    • /
    • 1997
  • Six adult female Murrah buffaloes of about 12 years were exposed to solar radiation during summer when minimum and maximum ambient temperatures were 27.1 and $44.1^{\circ}C$, respectively. The skin surface temperature at forehead, middle pinna, neck, rump, foreleg, hind legs were recorded using non-contact temperature measuring instrument and respiration rate and rectal temperature were measured throughout the 24 hours starting from 6:30 AM. The diurnal fluctuations and temperature gradients have been reported for buffaloes. During summer when ambient temperature and solar radiation was maximum, adult buffaloes were not able to maintain their thermal balance even after increasing the pulmonary frequency 5 - 6 times. The changes in skin temperature at various sites indicate that the temperature of skin surface not only varies in relation to exposure but also due to water diffusion and evaporation.

증착 온도 및 수소 유량에 따른 IGZO 박막의 구조적 및 전기적 특성 (Structural and Electrical Characteristics of IGZO Thin Films Deposited at Different Substrate Temperature and Hydrogen Flow Rate)

  • 박수진;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제15권4호
    • /
    • pp.46-50
    • /
    • 2016
  • In this study, we have investigated the effect of the substrate temperature and hydrogen flow rate on the characteristics of IGZO thin films for the TCO(transparent conducting oxide). For this purpose, IGZO thin films were deposited by RF magnetron sputtering at room temperature and $300^{\circ}C$ with various $H_2$ flow rate. In order to investigate the influences of the hydrogen, the flow rate of hydrogen in argon mixing gas has been changed from 0.1sccm to 1.0sccm. IGZO thin films deposited at room temperature show amorphous structure, whereas IGZO thin films deposited at $300^{\circ}C$ show crystalline structure having an (222) preferential orientation. The electrical resistivity of the amorphous-IGZO films deposited at R.T. was lower than that of the crystalline-IGZO thin films deposited at $300^{\circ}C$. The increase of electrical resistivity with increasing substrate temperature was interpreted in terms of the decrease of the charge carrier mobility. The transmittance of the IGZO films deposited at $300^{\circ}C$ was decreased deposited with hydrogen gas.

A Model for Predicting the Effect of Increasing Air Temperature on the Net Photosynthetic Rate of Quercus mongolica Stands

  • Ihm, Byung-Sun;Lee, Jeom-Sook;Kim, Jong-Wook;Kim, Joon-Ho
    • Journal of Ecology and Environment
    • /
    • 제30권1호
    • /
    • pp.1-7
    • /
    • 2007
  • A model was developed to predict the effects of rising air temperature on net photosynthetic rate of Quercus mongolica stands at Mt. Paekcheok-san, Kangwon-do in South Korea. The PFD (Photon flux density) and air temperature were determined from weather data from the research site and the Daegwallyeong meteorological station and gas exchange or release responses of each tree component were measured. Using these data, we simulated the effects of increases in mean annual air temperatures above current conditions on annual $CO_2$ budget of Q. mongolica stands. If mean annual air temperature is increased by 0.5, 1.0, 1.5, 2.0, 2.5 or $3.0^{\circ}C$, annual net photosynthetic rate will be increased by 8.8, 12.8, 14.5, 12.6, 9.2 and 1.0 ton $CO_2\;ha^{-1}yr^{-1}$ respectively. Simulations indicate that changes in air temperature will have a major impact on gas exchange and release in Q. mongolica stands, resulting in a net increase in the rate of carbon fixation by standing crops.

아세토페논이 양모의 염색속도에 미치는 영향 (Effect of Acetophenone on the Rate of Wool Dyeing)

  • 도성국
    • 한국의류산업학회지
    • /
    • 제10권3호
    • /
    • pp.394-398
    • /
    • 2008
  • One of barely water soluble ketones, acetophenone (AP) was dissolved in methanol and then was mixed with aqueous solution of C. I. Red Acid 114. In order to find out the role of AP in the dyeing process the rate constants and the activation parameters were calculated. The rate for the dyeing with AP was faster than that without it. Because of the reduced temperature dependence by AP the activation energy ($E_a$) for the dyeing with AP was smaller than that without it. With increasing temperature the activation enthalpy (${\Delta}H^*$), the activation entropy (${\Delta}S^*$), and the activation free energy ($G^*$) decreased, which was more noticeable in dyeing with AP. The rate constants and the activation parameters agreed well with the results from the previous reports that the ability of AP to increase disaggregation of dye molecules, loosening the wool fiber, and wickabilty of dyeing solution made it possible to dye wool fiber at low temperature.

반경방향으로의 온도구배가 Taylor Vortex에 미치는 영향에 대한 수치적 연구 (Numerical Study of Radial Temperature Gradient Effect on Taylor Vortices)

  • 강창우;양경수;윤동혁
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.900-908
    • /
    • 2009
  • Numerical simulation has been carried out to investigate the influence of radial temperature gradient on the Taylor Vortex flow. Varying the Grashof number, we study the detailed flow and temperature fields. The current numerical results show good agreement with the experimental results currently available. It turns out that wavy spiral vortices are generated by increasing temperature gradient. We classify flow patterns for various Grashof numbers based on the characteristics of flow fields and spiral vortices. The correlation between Grashof number with wave number shows that the spiral angle and size of Taylor vortices increase with increasing temperature gradient. Temperature gradient does not have a great influence on the heat transfer rate of the cylinder surfaces.

A Numerical Study on Methane-Air Counterflow Diffusion Flames Part 2. Global Strain Rate

  • Park, Woe Chul
    • International Journal of Safety
    • /
    • 제2권1호
    • /
    • pp.12-16
    • /
    • 2003
  • In Part 1, the flame structure of the counterflow nonpremixed flames computed by using Fire Dynamics Simulator was compared with that of OPPDIF for different concentrations of methane in the fuel stream. In this study, comparisons were made for the global strain rate that is an important parameter for diffusion flames for further evaluation of FDS. At each of the three fuel concentrations, $20% CH_4+ 80% N_2, 50% CH_4 + 50% N_2, 90% CH_4 + 10% N_2$ in the fuel stream, the temperature and axial velocity profiles were investigated for the global strain rate in the range from 20 to $100s^{-1}$. Changes in flame thickness and radius were also compared with OPPDIF. There was good agreement in the temperature and axial velocity profiles between the axisymmetric simulations and the one-dimensional computations except for the regions where the flame temperature reach its peak and the axial velocity rapidly changes. The simulations of the axisymmetric flames with FDS showed that the flame thickness decreases and the flame radius increases with increasing global strain rate.

지역난방 2차측 유량변화가 내부 열유속 및 에너지소비량에 미치는 영향에 관한 실험적 연구 (The Experimental Study of the Heat Flux and Energy Consumption on Variable Flow Rate for Secondary Side of DHS)

  • 홍성기;조성환
    • 설비공학논문집
    • /
    • 제27권5호
    • /
    • pp.247-253
    • /
    • 2015
  • The presented work demonstrates the effects of flow rate on the secondary side of DHS (District Heating System). Increasing flow rate at the secondary side of DHS decreases energy consumption and time to reach the set-point of the heated room while increasing heat flux on the floor in the heating space. When flow rate increases, the overall heat transfer rate of radiant floor also increases. However, the results also show overall heat transfer rateto not increased linearly and thus the existence of an optimal flow rate for the secondary side of DHS. Control of the radiant floor with hot water may be more effectively accomplished with a combined control strategy that includes heat flux and a temperature set-point. This experimental analysis has been performed using a lab-scaled DHS pilot plant located at Jeonju University in Korea.

Dispersion Polymerization of Acrylamide in t-Butyl Alcohol/Water Media

  • Lee, Ki-Chang;Lee, Seung-Eun;Park, Yoo-Jin;Song, Bong-Keun
    • Macromolecular Research
    • /
    • 제12권2호
    • /
    • pp.213-218
    • /
    • 2004
  • We have performed dispersion polymerization of acrylamide in tert-butyl alcohol/water mixture-using hydroxypropyl cellulose and ammonium persulfate as the stabilizer and the initiator, respectively - to study the effects that the concentration of monomer, initiator, and stabilizer, the tert-butyl alcohol/water ratios as polymerization media, and the reaction temperature have on, among other things, the polymerization kinetics, particle sizes, and molecular weights. The polymerization rate increased upon increasing the concentration of the monomer, initiator, and stabilizer, the water content in the tert-butyl alcohol/water media, and the polymerization temperature. The average particle size of the lattices increased upon increasing the concentration of initiator, the polymerization temperature, and the water content in the tert-butyl alcohol/water media, but it decreased upon increasing the concentration of monomer and stabilizer. The viscosity-average molecular weight increased upon increasing the concentration of monomer and stabilizer and the water content in the tert-butyl alcohol/water media, but it decreased upon increasing both the concentration of initiator and the polymerization temperature.

브레이징을 이용한 Ti/STS321L 접합체의 미세조직과 기계적 특성의 변화 (Variations of Micro-Structures and Mechanical Properties of Ti/STS321L Joint Using Brazing Method)

  • 구자명;정우주;한범석;권상철;정승부
    • Journal of Welding and Joining
    • /
    • 제20권6호
    • /
    • pp.830-837
    • /
    • 2002
  • This study investigated variations of micro-structures and mechanical properties of Ti / STS321L joint with various bonding temperature and time using brazing method. According to increasing bonding temperature and time, it was observed that the thickness of their reaction layer increased due So increasing diffusion rate and time. From the EPMA results, Ti diffused to the STS321L substrate according to increasing bending time to 30min. Hardness of bonded interface increased with increasing bonding temperature and time due to increasing their oxides and intermetallic compounds. XRD data indicated that Ag, Ag-Ti intermetallic compounds, TiAg and $Ti_3Ag$ and titanium oxide, $TiO_2$ were formed in interface. In tensile test, it was found that the tensile strength had a maximum value at the bonding temperature of $900^{\circ}C$ and time of 5min, and tensile strength decreased over bonding time of 5min. The critical thickness of intermetallic compounds was observed to about $30\mu\textrm{m}$, because of brittleness from their excessive intermetallic compounds and titanium oxide, and weakness from void.

브레이징을 이용한 Ti/STS321L 접합체의 미세조직과 기계적 특성의 변화 (Variations of Micro-Structures and Mechanical Properties of Ti/STS321L Joint Using Brazing Method)

  • 구자명;정우주;한범석;권상철;정승부
    • Journal of Welding and Joining
    • /
    • 제20권6호
    • /
    • pp.106-106
    • /
    • 2002
  • This study investigated variations of micro-structures and mechanical properties of Ti / STS321L joint with various bonding temperature and time using brazing method. According to increasing bonding temperature and time, it was observed that the thickness of their reaction layer increased due So increasing diffusion rate and time. From the EPMA results, Ti diffused to the STS321L substrate according to increasing bending time to 30min. Hardness of bonded interface increased with increasing bonding temperature and time due to increasing their oxides and intermetallic compounds. XRD data indicated that Ag, Ag-Ti intermetallic compounds, TiAg and Ti₃Ag and titanium oxide, TiO₂were formed in interface. In tensile test, it was found that the tensile strength had a maximum value at the bonding temperature of 900℃ and time of 5min, and tensile strength decreased over bonding time of 5min. The critical thickness of intermetallic compounds was observed to about 30㎛, because of brittleness from their excessive intermetallic compounds and titanium oxide, and weakness from void.