• Title/Summary/Keyword: Increased Fatigue

Search Result 1,187, Processing Time 0.027 seconds

Study on the mechanical properties and rheological model of an anchored rock mass under creep-fatigue loading

  • Song, Yang;Li, Yong qi
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.535-546
    • /
    • 2020
  • The stress environment of deep rock masses is complex. Under the action of earthquakes or blasting, the strength and stability of anchored rock masses in fracture zones or faults are affected. To explore the variation in anchored rock masses under creep-fatigue loading, shear creep comparative testing of anchored marble specimens with or without fatigue loading is performed. Considering the damage variable of rock under fatigue loading, a rheological model is established to characterize the whole shear creep process of anchored rock masses under creep-fatigue loading. The results show that (1) the overall deformation of marble under creep-fatigue loading is larger than that under only shear creep loading, and the average deformation is increased by 18.3%. (2) By comparing the creep curves with and without fatigue loading, the two curves basically coincide when the first level stress is applied, and the two curves are stable with the increase in stress level. The results show that the strain difference among the specimens increases gradually in the steady-state stage and reaches the maximum at the fourth level. (3) The shear creep is described by considering the creep mechanical properties of anchored rock masses under fatigue loading. The accuracy of this creep-fatigue model is verified by laboratory tests, and the applicability of the model is illustrated by the fitting parameter R2. The proposed model provides a theoretical basis for the study of anchored rock masses under low-frequency earthquakes or blasting and new methods for the stability and reinforcement of rock masses.

Fatigue life enhancement of defective structures by bonded repairs

  • Wang, Q.Y.;Kawagoishi, N.;Chen, Q.;Pidaparti, R.M.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.3
    • /
    • pp.277-286
    • /
    • 2004
  • Defective metallic components and structures are being repaired with bonded composite patches to improve overall mechanical and fatigue properties. In this study, fatigue crack growth tests were conducted on pre-cracked 7075/T6 Aluminum substrates with and without bonded Boron/epoxy patches. A considerable increase in the fatigue life and a decrease in the stress intensity factor (SIF) were observed as the number of patch plies increased. The experimental results demonstrate that the patch configurations and patch thickness can enhance fatigue life by order of magnitude. Quantitative comparisons between analytical and experimental data were made, and the analytical model based on a modified Rose's analytical solution appears to best estimate the fatigue life.

A Study on Pilot Fatigue Relating to Safety Operations (조종사의 피로와 안전운항에 대한 고찰)

  • Park, Y.S.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.2
    • /
    • pp.63-71
    • /
    • 2005
  • There is a concern in the aviation community that pilot schedules can lead to fatigue and increased chance of an aviation accident. Yet despite this concern, there is little empirical studies showing the relationship between pilot fatigue and commercial aviation accidents. At this point of view, countering fatigue is a challenging proposition in complex aviation operations. However, with appropriate planning, many strategies can contribute to pilot alertness and flight safety. With proper education program, sustaining a physiological fit, a right knowledge about pilot fatigue can design a safety operations. On this study, I inquire into the ways of enhancing pilot's efficiency from fatigue.

  • PDF

Indentations near Crack Tip in Al-5086 and Characteristics of Fatigue crack Propagation (Al-5086의 균열선단에 가공한 압흔과 피로균열전파특성)

  • 송삼홍;김병석;최병호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.477-480
    • /
    • 2000
  • It is useful way to make indentations near crack tip in order to increase fatigue life or repair a fatigue crack. In this study, bending fatigue tests were performed to investigate the optimal position of the indentations near crack tip. The results shows that fatigue life of the specimen is dramatically increased by indentation and the most effective location is the back of the crack tip.

  • PDF

The Improvement of SNCM220 Winding Shaft in Mechanical Properties by Heat Treatment (SNCM220 강 권축의 열처리를 통한 기계적성질 향상)

  • 이호성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.61-67
    • /
    • 1998
  • To find out the reason of fracture, specimens were made from the fractured winding shaft and the mechanical properties as well as their microstructures were investigated. Several heat treatments. including caburizing and tempering were carried out to improve the microstructure, mechanical properties, fatigue crack propagation and rotating bending fatigue characteristics. Through these experiments, following conclusions were obtained. (1) Carburized and tempered specimens showed greatly improved mechanical properties including impact energy, hardness and strength. (2) The fatigue strength of the carburized and tempered specimens increased more than twice than that of the original fractured winding shaft. (3) Crack propagation of the carburized and tempered specimens were faster than that of the original fractured speciens under the same △K. However, it is believed that, in the early stage, the fatigue crack initiation and growth for the carburized and tempered specimen is more difficult.

  • PDF

Effect of Shot Peening on Fatigue Life of Heat Treated Spring Steel (열처리된 스프링강의 피로수명 개선을 위한 쇼트피닝 가공 효과)

  • Lee, Seung-Ho;Shim, Dong-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.6
    • /
    • pp.336-341
    • /
    • 2004
  • The effect of shot peening conditions on the fatigue properties of heat-treated spring steel has been investigated by using residual stress measurement and metallography. The mechanical properties of material did not change so much by shot peening. However, the fatigue strength and fatigue life increased about 20% to 40% by 1-step and 2-step shot peening process. The fatigue strength and life were closely related to the value and position of maximum compressive residual stress by shot peening process. In the case of warm shot peening, compressive residual stress of specimens shot peening processed at $200^{\circ}C$ was higher than those of specimens shot peening processed at room temperature, $100^{\circ}C$ and $300^{\circ}C$.

A Study on the Fatigue Characteristics of Al 7075-T6 by Shot Peening (쇼트피닝 가공에 의한 Al 7075-T6의 피로특성에 관한 연구)

  • 김태형;정성균;신용승
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.335-340
    • /
    • 2002
  • The shot peening process is most often used to improve fatigue properties of metal parts. In order to achieve optimum, repeatable and reliable fatigue enhancement from the shot peening process, the important shot peening parameters must be controlled. In this paper, the optimum shot peening condition is investigated. Rotate bending fatigue test was accomplished to investigate the effects of shot peening on the fatigue strength. Experimental results show that the fatigue strength was tremendously increased by optimum peening condition. But the fatigue strength was decreased by under peening or over peening.

  • PDF

Quantitative Evaluation for Fatigue Limit and its Application to Spheroidal Graphite Cast Iron (피로한도의 정량평가법과 구상흑연주철에 대한 적용)

  • Kim, Jin-Hak;Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.203-208
    • /
    • 1998
  • Fatigue tests were performed to examine the 4 parameter method for specimens prepared by various heat treatment which resulted in different mechanical properties. Obtained main results are as follows. (1) Samples treated by austempering did not show the expected improvement of fatigue limit although hardness and strength increased. This is attributed to the fact that defect sensitivities of materials increase as increasing of hardness and tensile strength, it is also shown that the graphites acting as stress concentration place become larger by austempering heat treatment than by normal annealing. (2) It is very reasonable to predict the fatigue limit of ductile irons with 4 parameter method based on ${\sigma}_{TS}$, $H_v$, ${\Delta}K_{th}$ and ${\sqrt{area}}_{max}$. (3) The half-austempering treatment appeared to be more useful than the full-austempering method to improve the fatigue limit in the spheroidal graphite cast iron with multi defective material.

  • PDF

An Effect of Temperature on the Fatigue Crack Propagation Behavior of Spring Steel for Vehicle (차량용 스프링강의 피로거동에 미치는 온도의 영향)

  • 박경동;류찬욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.83-90
    • /
    • 2004
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature and low temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$,$-100^{\circ}C$, and $-150^{\circ}C$, in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I)was increased but stress intensity factor range ΔK in the stable of fatigue crack growth (Region II) was decreased in proportion to decrease temperature. It is assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerably higher than that of room temperature in the early stage and stable of fatigue crack growth region.

The Effect of Drawing and Heat Treatment on Fatigue Life and Machinability in Free Machining Steel (쾌삭강의 피로수명 및 절삭성에 미치는 인발-열처리의 영향)

  • Suh, C.H.;Kim, D.B.;Oh, S.K.;Jung, Y.C.;Park, M.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.95-100
    • /
    • 2010
  • Drawing and normalizing are efficient means for controlling strength, fatigue and machinability of free machining steel. Normally strength and machinability are conflicting properties which need to be optimized. In this study, the effects of normalizing temperature and reduction of area on strength, fatigue and machinability were investigated. Fine grains were generated at lower normalizing temperature and fatigue life was increased with decreasing grain size. Matrix was work hardened and elongated with increasing reduction of area. Inclusions also were elongated and cross-sectional area of inclusions along drawing axis was decreased. The effects of work hardening and grain size on fatigue life were significant, but only work hardening affected machinability. Shape and distribution of inclusions after drawing had little effect on fatigue life and machinability.