• Title/Summary/Keyword: Increased Fatigue

Search Result 1,187, Processing Time 0.025 seconds

Derivation of EEG Spectrum-based Feature Parameters for Mental Fatigue Determination (정신적 피로 판별을 위한 뇌파 스펙트럼 기반 특징 파라미터 도출)

  • Seo, Ssang-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.10
    • /
    • pp.10-19
    • /
    • 2021
  • In this paper, we tried to derive characteristic parameters that reflect mental fatigue through EEG measurement and analysis. For this purpose, mental fatigue was induced through a resting state with eyes closed and performing subtraction operations in mental arithmetic for 30 minutes. Five subjects participated in the experiment, and all subjects were right-handed male students in university, with an average age of 25.5 years. Spectral analysis was performed on the EEG collected at the beginning and the end of the experiment to derive feature parameters reflecting mental fatigue. As a result of the analysis, the absolute power of the alpha band in the occipital lobe and the temporal lobe increased as the mental fatigue increased, while the relative power decreased. Also, the difference in power between resting state and task state showed that the relative power was larger than the absolute power. These results indicate that alpha relative power in the occipital lobe and temporal lobe is a feature parameter reflecting mental fatigue. The results of this study can be utilized as feature parameters for the development of an automated system for mental fatigue determination such as fatigue and drowsiness while driving.

Impact of Indoor Green in Rest Space on Fatigue Recovery Among Manufacturing Workers (휴게공간에서의 식물 도입이 생산직 근로자의 피로 회복에 미치는 효과)

  • ChoHye Youn;LeeBom Chung;Minji Kang;Juyoung Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.3
    • /
    • pp.217-226
    • /
    • 2024
  • Manufacturing workers face increased fatigue and stress due to environmental factors in workplace such as noise and vibration. Addressing this issue requires creating conducive rest spaces; however, the existing conditions of rest spaces in manufacturing workplace are subpar and lack sufficient scholarly evidence. This study investigated the effect of nature-based rest spaces on the physical and emotional recovery from fatigue on manufacturing workers. Three manufacturing complexes with nature-friendly rest spaces were selected, and 63 manufacturing workers participated in the study. The measurement tools included the Multidimensional Fatigue Scale (MFS) for fatigue levels, physiological indicators (blood pressure and heart rate), and emotional indicators (Zuckerman Inventory of Personal Reaction Scale; ZIPERS, Perceived Restorativeness Scale; PRS, Profile of Mood States; POMS and State-Trait Anxiety Inventory; STAI). The study compared recovery levels during a 7-minute rest between a space without plants and a space with natural elements. The results indicated a significant reduction in systolic and diastolic blood pressure of participants in green rest spaces compared with those in conventional rest spaces. Regarding fatigue levels, green rest spaces showed a decrease in systolic blood pressure in the middle-fatigue and high-fatigue groups. Positive feelings increased in green spaces, whereas negative emotions decreased, suggesting that short breaks in nature-friendly environments effectively promote workers' physical and emotional recovery. Furthermore, this study emphasizes the importance of green space in various work environments to promote well-being in workers.

The Effect of Thickness of Plate on Fatigue Crack Propagation Behavior by Indentations (판두께에 따른 압흔가공에 의한 피로크랙 전파거동)

  • 송삼홍;최진호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.826-830
    • /
    • 1994
  • Making Brinell indentations facing each other near the crack tip is very effective method in increasing fatigue life. In this paper, fatigue test was performed after indentation to investigate the effect of thickness of specimen. The results show that fatigue lives increased my making indentation and retardation cycle is inverse proportional to thickness of specimen.

  • PDF

A Study of Crack Growth Behavior of Al2024 (Al2024의 균열성장거동에 관한 연구)

  • Lee, Won-Seok;Lee, Hyun-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.49-55
    • /
    • 2000
  • This study describes the fatigue characteristics for Al2024 alloy, which is aircraft structure material. For this work, the plane-strain fracture toughness test, the plane-stress fracture toughness test and the crack growth rates test were conducted under the standard testing method. Test equipment is a computer-controlled closed-loop fatigue testing machine. The data of each test result is very important to aircraft structure reliability estimation, life prediction, design analysis, endurance analysis and damage tolerance analysis. In addition, the fatigue crack growth threshold($\DeltaKth$) value decreased as the stress ratio increased. Also, $\DeltaKth$ decreased as the thickness increased in LT, TL directions.

  • PDF

Characterization of Low-cycle Fatigue of Copper and Isothermal Aging of 2.25Cr Ferritic Steel by Ultrasonic Nonlinearity Parameter (초음파 비선형파라미터를 이용한 무산소동 저주기피로와 2.25Cr 페라이트강의 등온열화 평가)

  • Kim, Chungseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.5
    • /
    • pp.239-245
    • /
    • 2022
  • The purpose of this study is to evaluate the degree of microstructural change of materials using ultrasonic nonlinear parameters. For microstructure change, isothermal heat-treated ferritic 2.25Cr steel and low-cycle fatigue-damage copper alloy were prepared. The variation in ultrasonic nonlinearity was analyzed and evaluated through changes in hardness, ductile-brittle transition temperature, electron microscopy, and X-ray diffraction tests. Ultrasonic nonlinearity of 2.25Cr steel increased rapidly during the first 1,000 hours of deterioration and then gradually increased thereafter. The variation in non-linear parameters was shown to be coarsening of carbides and an increase in the volume fraction of stable M6C carbides during heat treatment. Due to the low-cycle fatigue deformation of oxygen-free copper, the dislocation that causes lattice deformation developed in the material, distorting the propagating ultrasonic waves, and causing an increase in the ultrasonic nonlinear parameters.

Transient Effects of Calf Muscle Fatigue and Visual Control on Postural Balance During Single Leg Standing

  • Han, Jin-Tae
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.3
    • /
    • pp.67-71
    • /
    • 2017
  • PURPOSE: Muscle fatigue is a cause to change proprioception. The purpose of this study was to investigate the effects of calf muscle fatigue and visual control on postural balance during single-legged standing in healthy adults. METHODS: Nineteen healthy adults (male) were participated in this study (mean age: 24.36 years; mean height: 171.32 cm; mean weight: 64.58 kg). The postural balance (sway length, sway area, sway velocity of COG displacement) was measured by Balance Trainer System (BT4) in before and after calf muscle fatigue feeling in single legged stance. In this study, repetitive single-legged heel rise test was used to induce fatigue of the calf muscle. Paired t- test was used to compare the postural balance between before and after calf muscle fatigue. Data of subjects were analyzed using SPSS 22.0 (SPSS Inc., Chicago, IL, USA). Level of significance was set to .05. RESULTS: The sway length, sway area, sway velocity of COG (center of gravity) displacement after calf muscle fatigue feeling was significantly increased compared to before calf muscle fatigue feeling during single leg standing both eye open and close conditions (p<.05). CONCLUSION: This study suggested that calf muscle fatigue feeling has affected on postural balance when standing one leg both eye open and close conditions and postural control was disturbed by muscle fatigue and visual feedback in single leg standing.

A Study on the Life Prediction Method using Artificial Neural Network under Creep-Fatigue Interaction (인공 신경망을 이용한 크리프-피로 상호작용시 수명예측기법에 관한 연구)

  • 권영일;김범준;임병수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.135-142
    • /
    • 2001
  • The effect of tensile hold time on the creep-fatigue interaction in AISI 316 stainless steel was investigated. To study the fatigue characteristics of the material, strain controlled low cycle fatigue(LCF) tests were carried out under the continuous triangular waveshape with three different total strain ranges of 1.0%, 1.5% and 2.0%. To study the creep-fatigue interaction, 5min., 10min., and 30min. of tensile hold times were applied to the continuous triangular waveshape with the same three total strain ranges. The creep-fatigue life was found to be the longest when the 5min. tensile hold time was applied and was the shortest when the 30min. tensile hold time was applied. The cause fur the shortest creep-fatigue life under the 30min. tensile hold time is believed to be the effect of the increased creep damage per cycle as the hold time increases. The creep-fatigue life prediction using artificial neural network(ANN) showed closer prediction values to the experimental values than by the modified Coffin-Manson method.

  • PDF

Fatigue Properties of Copper Foil and the Evolution of Surface Roughness

  • Oh, Chung-Seog;Bae, Jong-Sung;Lee, Hak-Joo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.57-62
    • /
    • 2008
  • The aim of this investigation was to extract the fatigue properties at the designated fatigue life of copper foil and observe the mean stress and stress amplitude effects on both the fatigue life and the corresponding surface morphology. Tensile tests were performed to determine the baseline monotonic material properties of the proportional limit and ultimate tensile strength. Constant amplitude fatigue tests were carried out using a feedback-controlled fatigue testing machine. The mean stress and the stress amplitude were changed to obtain the complete nominal stress-life curves. An atomic force microscope was utilized to observe the relationship between the fatigue damage and the corresponding changes in surface morphology. A Basquin's exponent of-0.071 was obtained through the fatigue tests. An endurance limit of 122 MPa was inferred from a Haigh diagram. The specimen surface became rougher as the number of fatigue cycles increased, and there was a close relationship between the fatigue damage and the surface roughness evolution.

A Study on the Optimum Shot Peening Condition for Al7075-T6 (AL7075-T6의 최적 쇼트피닝 조건에 관한 연구)

  • Jeong,Seong-Gyun;Kim,Tae-Hyeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.63-68
    • /
    • 2003
  • Shot peening process is most often used to improve the fatigue properties of metal parts, In order to achieve an optimum, repeatable, and reliable fatigue enhancement from the shot peening process, the important shot peening parameters must be optimized, In this paper, the optimum peening intensity(Almen intensity) condition is investigated by experiment. Rotary bending fatigue test has been adopted to investigate the effects of optimum peening on the fatigue characteristics, Experimental results show that the fatigue strength and fatigue life has been tremendously increased by optimum-peening treatment. However, the fatigue strength and fatigue life has been decreased by under or over peening.

Contributors to Fatigue of Mine Workers in the South African Gold and Platinum Sector

  • Pelders, Jodi;Nelson, Gill
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.188-195
    • /
    • 2019
  • Background: Mine workers in South Africa face challenges relating to poor health and safety, including fatigue risks, and poor socioeconomic and living conditions. Fatigue results in impaired mental and physical performance. The aim of this study was to assess contributors to fatigue of mine workers in South Africa. Methods: Data collection took place at four gold mines and one platinum mine in South Africa. A total of 21 focus groups were held with individuals in management, union representatives, and mine workers, and 564 questionnaires were completed by mine workers to gather information about fatigue and potential contributors to fatigue at these mines. Results: Qualitatively (through focus groups), fatigue was attributed to extended working hours, harsh working conditions, high workloads, production pressure, and resource constraints, along with aspects relating to demographic and socioeconomic factors, living conditions, lifestyle, health, and wellness. Greater fatigue was significantly associated with younger age, indebtedness, a lack of exercise, poor nutrition, less sleep, increased alcohol use, poor self-reported health, more sick leave, higher stress, and lower job satisfaction. Conclusion: The aim of the study was achieved; numerous work-, sociodemographic-, lifestyle-, and wellness-related factors were linked to fatigue in the participating mine workers. Contributors to fatigue should be addressed to improve health, safety, and sustainability in the industry.