• 제목/요약/키워드: Inconel718

검색결과 112건 처리시간 0.035초

플라즈마 용사법에 의한 열차폐 코팅의 열피로에 따른 AE신호 특성 연구 (A Study on Acoustic Emission Characteristics through the Cyclic Thermal Test of Thermal Barrier Coating by Plasma Spray Process)

  • 박진효;이구현;예경환;김승태;전채홍;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1349-1352
    • /
    • 2005
  • This paper is to investigate a defect for thermal barrier coating layers by acoustic emission method in 4-point bending test. The two-layer thermal barrier coating is composed of $150\mu{m}\;CoNiCrAlY\;bond\;coating\;by\;vacuum\;plasma\;spray(VPS)\;process\;and\;250\mu{m}\;ZrO_2-8wt%Y_2O_3$ ceramic coating layer by air plasma spray(APS) process on Inconel-718. The specimen prepared by cyclic thermal test(500, 1000, 2000cycle) at $1050^{\circ}C$ The AE monitoring system is composed of PICO type sensor, a wide band pre-amplifier(40dB), PC and AE DSP(16/32 PAC) board. The AE event, amplitude, Cumulative energy and count of coating specimens is evaluated according to cyclic thermal test.

  • PDF

Experimental and numerical investigation on gas turbine blade with the application of thermal barrier coatings

  • Aabid, Abdul;Jyothi, Jyothi;Zayan, Jalal Mohammed;Khan, Sher Afghan
    • Advances in materials Research
    • /
    • 제8권4호
    • /
    • pp.275-293
    • /
    • 2019
  • The engine parts material used in gas turbines (GTs) should be resistant to high-temperature variations. Thermal barrier coatings (TBCs) for gas turbine blades are found to have a significant effect on prolonging the life cycle of turbine blades by providing additional heat resistance. This work is to study the performance of TBCs on the high-temperature environment of the turbine blades. It is understood that this coating will increase the lifecycles of blade parts and decrease maintainence and repair costs. Experiments were performed on the gas turbine blade to see the effect of TBCs in different combinations of materials through the air plasma method. Three-layered coatings using materials INCONEL 718 as base coating, NiCoCrAIY as middle coating, and La2Ce2O7 as the top coating was applied. Finite element analysis was performed using a two-dimensional method to optimize the suitable formulation of coatings on the blade. Temperature distributions for different combinations of coatings layers with different materials and thickness were studied. Additionally, three-dimensional thermal stress analysis was performed on the blade with a commercial code. Results on the effect of TBCs shows a significant improvement in thermal resistance compared to the uncoated gas turbine blade.

고온 수명평가를 위한 수정 크립-피로 손상모델의 걔발 (Development of Modified Creep-Fatigue Damage Model for High Temperature Life Prediction)

  • 박종주;석창성;김영진
    • 대한기계학회논문집A
    • /
    • 제20권11호
    • /
    • pp.3424-3432
    • /
    • 1996
  • For mechanical system operating at high temperature, damage due to the interaction effect of creep and fatigue plays an important role. The objective of this paper is to develop a modified creep-fatigue damage model which separately analyzes the pure creep damage for hold time and the creep-fatigue interaction damage during startup and shutdown period. The creep damage was calculated by the general creep damage equation and the creep-fatigue interaction damage was calculated by the modified equation which is based on the frequency modified strain range method with strain rate term. In order to verify the proposed model, a service of high temperature low cycle fatigue tests were performed. The test specimens were made from inconel-718 superalloy and the test parameters were wave shape and hold time. A good agreement between the predicted lives based on the proposed model and experimentally obtained ones was observed.

액체로켓엔진 터보펌프의 금속 실 체결부 해석 (Analysis of Joints Using Metal Seals in Liquid Rocket Engine Turbopump)

  • 윤석환;전성민;김진한
    • 한국추진공학회지
    • /
    • 제17권6호
    • /
    • pp.105-112
    • /
    • 2013
  • 액체로켓엔진의 핵심부품인 터보펌프는 회전체와 케이싱으로 이루어진 여러 부품의 조립체로서 각종 체결 부분에 매질의 누설방지를 위한 실이 삽입된다. 특히 극저온 환경에서 작동하는 산화제펌프와 고온에서 작동하는 터빈 케이싱에는 안정적인 누설방지를 위하여 금속 실이 사용되는데, 금속 실은 높은 초기 체결력을 요하므로 이를 뒷받침할 수 있는 플랜지 및 체결요소의 적절한 구조 설계가 필수적이다. 본 연구에서는 산화제펌프에 사용하는 콘형 실(conical seal) 및 터빈에서 사용하는 금속 평 실(solid metal seal)과 C 실에 대하여 적절한 실 캐비티 및 플랜지 형상을 설계하고, 체결요소의 치수와 수량을 결정하여 건전한 체결 및 운전이 보장될 수 있도록 구조해석을 수행하여 검증하였다.

$17{\times}17$ KOFA 사용후핵연료집합체내 구조재의 방사선원항 특성 분석 (Source Term Characterization for Structural Components in $17{\times}17$ KOFA Spent Fuel Assembly)

  • 조동건;국동학;최희주;최종원
    • 방사성폐기물학회지
    • /
    • 제8권4호
    • /
    • pp.347-353
    • /
    • 2010
  • 사용후핵연료를 파이로 건식처리하면 사용후핵연료 자체 내에 존재하는 세슘, 스트론튬, 초우라늄 계열 등이 중간저장 되어 영구처분 방사선원항에서 제외되므로 사용후핵연료집합체를 구성하는 구조재, 즉 금속폐기물의 방사선원항이 중요해지게 된다. 따라서 본 연구에서는 $17{\times}17$ KOFA 사용후핵연료 10 톤이 파이로 건식처리 되었을 경우를 가정하여 각 구조재 부품별로 방사선원항 특성을 분석하였다. 우선 구조재 부품별로 질량 및 부피를 상세히 계산하였다. 핵연료 상단 및 하단 고정체에서의 중성자스펙트럼이 노심과 다르므로 각 구조재 부품별로 핵반응단면적라이브러리를 KENO-VI/ORIGEN-S 모듈로 직접 생산하였으며, 이를 적용하여 ORIGEN-S 코드로 방사화 방사선원항을 평가하였다. 평가결과 원자로 방출후 10 년 시점에서의 방사능세기, 붕괴열, 위해지수 값은 각각 $1.40{\times}10^{15}$ Bequerels, 236 Watts, $4.34{\times}10^9m^3$-water 로 나타났으며, 이는 사용후핵연료 자체 값의 0.7 %, 1.1 %, 0.1 %에 해당하는 값이다. 방사능세기, 붕괴열, 위해지수 모든 측면에서는 금속폐기물 전체물량의 1 %만을 차지하는 인코넬 718 그리드판이 가장 중요한 것으로 평가되었으며, 특히 이를 따로 분리하여 관리하면 금속폐기물 전체 방사능세기를 20~45 % 정도, 위해지수를 30~45 % 정도 감소시킬 수 있는 것으로 나타났다. 전체적으로 볼 때, 금속폐기물의 방사능세기 및 위해지수는 처분시스템 설계 시 중요한 인자로 고려되어야 하나, 붕괴열은 그 열량이 작아 중요하지 않은 것으로 나타났다.

Chromizing과 이온 질화에 의한 CrNvyaus층 형성에 관한연구 (Studies on the formation of CrN surface layer by chromizing and plasma nitriding)

  • 박홍진;이상률;양성철;이상용;김상식;한전건
    • 한국표면공학회지
    • /
    • 제31권6호
    • /
    • pp.334-344
    • /
    • 1998
  • Yew coating pmccss t.o form a surface layer ol CrN phasc on mild steel (A81 1020!, AlSI Hi3, 1Cr-0.5Mo steel (ASTM A213 and Nickrl-base superalloy (Inconel 718) was developed. Surlaces of various alloys t,n.ateii by chromizing for the formation ol Cr diffusion layer was subsequently trcaled by plasma nitriding in order t.o form the hard CrS coating layer on the surfaces. This duplex plasma surface tri-atments of chromizing and plasma nitriding have induced a lormation of a duplex-lrcated surfacr hyer of approximat~ls 70-80 $\mu\textrm{m}$thickncss with a iargcly improved microiiardnrss up to approxiniateW 1500Hv(50gf). The main cause for the lage improvment in the surface hardncss is altribilted to [.he fact that CrN and $Fe_xN$ phases are created successfully by ccliromizins and plasma nilriding treatment. High tenipera1,urc wear resislance of the duplex-treated mild steel and HI3 steels at $600^{\circ}C$ was examined. Comparing the duplex-treated specimens with the specimens treated only by chromizing, the rcsults shovmi that, thc wear volume of the duplex-treated mild skcl and 1113 stcel aSt.er a wear test, at $600^{\circ}C$ were reduced hy a Iactor of 8 and 3, respectively. Characteristics of the CrS phase by duplrx treatment were compared with $CrN_x$,/TEX> film by ion plating and the wear behaviors of CrN film lormed by two different nroccsses arc nea.riy identical.

  • PDF

최적 고속화염용사법으로 제조된 Diamalloy4006 코팅의 내마모 특성 (Wear Property of Diamalloy-4006 Coating Prepared by OCP HVOF Thermal Spraying)

  • 주윤곤;윤재홍;정연길;이재현
    • 한국재료학회지
    • /
    • 제25권9호
    • /
    • pp.442-449
    • /
    • 2015
  • The effects of coating parameters were investigated in wear resistance coatings of Diamalloy-406 on Inconel 718 to obtain an optimum coating condition by high velocity oxy-fuel spraying. The coating parameters, the flow rates of source gases (hydrogen and oxygen), the powder feed rate, and the spray distance, were designed by the Taguchi method. The optimal conditions were determined: oxygen flow rate 34 FRM, hydrogen flow rate 57 FRM, powder feed rate 35 g/min, and spray distance 7 inch. Friction coefficients of the coating and the substrate decreased with an increasing sliding surface temperature from $25^{\circ}C$ to $450^{\circ}C$. The friction coefficient of Diamalloy-4006 coating decreased as the sliding surface temperature increased from $0.43{\pm}0.01$ at $25^{\circ}C$ to $0.29{\pm}0.01$ at $450^{\circ}C$. The wear trace and wear depth of the coating were smaller than the substrate at all temperatures tested. The relationship between spray parameters and wear resistance was discussed extensively, based on the measured roughness, hardness, and porosity in each coating.

Wear behaviors of HVOF spray coating of Co-alloy T800

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Park, Bong-Kyu;Youn, Suk-Jo;Back, Nam-Ki;Chun, Hui-Gon
    • 한국결정성장학회지
    • /
    • 제16권3호
    • /
    • pp.121-126
    • /
    • 2006
  • HVOF thermal spray coating of Co-alloy T800 is progressively replacing the classical hard coatings such as chrome plating because of the very toxic $Cr^{6+}$ ion known as carcinogen causing lung cancer. For the study of the possibility of replacing of chrome plating, the wear properties of HVOF Co-alloy T800 coatings are investigated using the reciprocating sliding tester both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$. The possibility as durability improvement coating is studied for the application to the high speed spindles vulnerable to frictional heat and wear. Wear mechanisms at the reciprocating sliding wear test are studied for the application to the systems similar to the sliding test such as high speed spindles. Wear debris and frictional coefficients of T800 coatings both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$ are drastically reduced compared to those of non-coated surface of parent substrate Inconel 718. This study shows that the coating is recommendable for the durability improvement coatings on the surfaces vulnerable to frictional heat. The sliding surfaces are weared by the mixed mechanisms such as oxidative wear, abrasion by the sliding ball slurry erosion by the mixture of solid particles and small drops of the melts and semi-melts of the attrited particles cavitation by the relative motions among the coating, sliding ball, the melts and semi-melts. and corrosive wear. The oxide particles and the melts and semi-melts play roles as solid and liquid lubricant reducing the wear and friction coefficient.

초고속 회전체의 내구성향상을 위한 Co-alloy(T800)의 초고속 용사코팅 (HVOF Spray Coating of Co-alloy(T800) for the Improvement of durability of High Speed Spindle)

  • 조동율;윤재홍;김길수;윤석조;백남기;박병철;천희곤
    • 한국공작기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.32-37
    • /
    • 2006
  • Micron size Co-alloy(T800) powder was coated on Inconel 718 by HVOF thermal spraying for the studies of the improvement of durability of high speed spindle by using Taguchi program for the parameters of spray distance, flow rates of hydrogen and oxygen and powder feed rate. The optimal coating process was determined by the studies of coating properties such as micro-structure, porosity, surface roughness and micro hardness. Friction and wear behaviors of coatings were investigated by sliding wear test at room temperature and $1000^{\circ}F(538^{\circ}C)$. At both room temperature and $538^{\circ}C$ the sliding wear debris and friction coefficients of the coating were drastically reduced compared with the surface of non-coated parent material. This shows that Co-alloy powder coating is highly recommendable for the durability improvement surface coating of high speed air-bearing spindle. At high temperature wear traces and friction coefficients of both coating and non-coating were drastically reduced compared with those of room temperature since the brittle oxides were formed easily on the surface, and the brittle oxide phases were attrited by the reciprocating sliding wear according to the complicated mixed wear mechanisms These oxide particles, partially melts and the melts play role as lubricant and reduce the wear and friction coefficient. This also shows that Co-alloy powder coating is highly recommendable far the durability improvement surface coating on the surface vulnerable to frictional heat such as high speed spindles.

Deformation Characteristics and Sealing Performance of Metallic O-rings for a Reactor Pressure Vessel

  • Shen, Mingxue;Peng, Xudong;Xie, Linjun;Meng, Xiangkai;Li, Xinggen
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.533-544
    • /
    • 2016
  • This paper provides a reference to determine the seal performance of metallic O-rings for a reactor pressure vessel (RPV). A nonlinear elastic-plastic model of an O-ring was constructed by the finite element method to analyze its intrinsic properties. It is also validated by experiments on scaled samples. The effects of the compression ratio, the geometrical parameters of the O-ring, and the structure parameters of the groove on the flange are discussed in detail. The results showed that the numerical analysis of the O-ring agrees well with the experimental data, the compression ratio has an important role in the distribution and magnitude of contact stress, and a suitable gap between the sidewall and groove can improve the sealing capability of the O-ring. After the optimization of the sealing structure, some key parameters of the O-ring (i.e., compression ratio, cross-section diameter, wall thickness, sidewall gap) have been recommended for application in megakilowatt class nuclear power plants. Furthermore, air tightness and thermal cycling tests were performed to verify the rationality of the finite element method and to reliably evaluate the sealing performance of a RPV.