• Title/Summary/Keyword: Inconel material

Search Result 118, Processing Time 0.026 seconds

Study of High Temperature of Inconel 740 Alloy in Air and Ar-0.2%SO2 Gas (대기 및 Ar-0.2%SO2가스에서 Inconel 740 합금의 고온부식 연구)

  • Lee, Dong Bok;Kim, Min Jung
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.43-52
    • /
    • 2021
  • The Ni-based superalloy, Inconel 740, was corroded between 800 and 1100℃ for up to 100 hr in air and Ar-0.2%SO2 gas in order to study its corrosion behavior in air and sulfur/oxygen environment. It displayed relatively good corrosion resistance in both environment, because its corrosion was primarily dominated by not sulfidation but oxidation especially in Ar-0.2%SO2 gas. Such was attributed to the thermodynamic stability of oxides of alloying elements when compared to corresponding sulfides. The scales consisted primarily of Cr2O3, together with some NiAl2O4, MnCr2O4, NiCrMnO4, and rutile-TiO2. Sulfur from SO2 gas made scales prone to spallation, and thicker. It also widened the internal corrosion zone when compared to air. The corrosion resistance of IN740 was mainly indebted to the formation of protective Cr2O3-rich oxides, and suppression of the sulfide formation.

Evaluation of Scratch Characteristics of Diaphragm for Application of Hydrogen Compressor Parts

  • Sung-Jun Lee;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.212-215
    • /
    • 2023
  • Diaphragm compressors play a crucial role in safely compressing large volumes of high-purity hydrogen gas without contamination or leakage, thereby ensuring quality and reliability. Diaphragm compressors use a thin, flat, triple-layered diaphragm plate that is subjected to repetitive piston pressure for compression. They are usually made of metallic materials such as stainless steel or Inconel owing to their high-pressure resistance. However, since they are consumable components, they fail due to fatigue from repetitive pressure and vibration stress. This study aims to evaluate the scratch characteristics of diaphragms in operational environments by conducting tests on three different samples: Inconel 718, AISI 301, and Teflon-coated AISI 301. The Inconel 718 sample underwent a polishing process, the AISI 301 sample used raw material, and the Teflon coating was applied to the AISI 301 substrate at a thickness of 50 ㎛. To assess the scratch resistance, reciprocating motion friction tests were performed using a tribometer, utilizing 220 and 2000 grit sandpapers as the counter materials. The results of the friction tests suggested that the Teflon-coated sample exhibited the lowest initial friction coefficient and consistently maintained the lowest average friction coefficient (0.13 and 0.11 with 220 and 2000 grit, respectively) throughout the test. Moreover, the Teflon-coated diaphragm showed minimal wear patterns, indicating superior scratch resistance than the Inconel 718 and AISI 301 samples. These findings suggest that Teflon coatings may offer an effective solution for enhancing scratch resistance in diaphragms, thereby improving compressor performance in high-pressure hydrogen applications.

Evaluation of the corrosion property on the welded zone of forged steel piston crown with types of filler metals (용접재료별 단강 피스톤 크라운 용접부위의 부식특성에 대한 평가)

  • Moon, Kyung-Man;Won, Jong-Pil;Lee, Myeong-Hoon;Baek, Tae-Sil;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.409-417
    • /
    • 2014
  • Since the oil price has been significantly jumped for recent some years, the diesel engine of the merchant ship has been mainly used the heavy oil of low quality. Thus, it has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas in a combustion chamber is getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of most parts surrounded with combustion chamber is more serious compared to the other parts of the engine. Therefore, an optimum weldment for these parts is very important to prolong their lifetime in a economical point of view. In this study, four types of filler metals such as Inconel 625, 718, 1.25Cr-0.5Mo and 0.5Mo were welded with SMAW and GTAW methods in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected zone and base metal were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% H2SO4 solution. The weld metal and base metal exhibited the best and worst corrosion resistance in all cases of filler metals. In particular, the weld metal welded with filler metals of Inconel 718 revealed the best corrosion resistance among the filler metals, and Inconel 625 followed the Inconel 718. Hardness relatively indicated higher value in the weld metal compared to the base metal. Furthermore, Inconel 625 and 718 indicated higher values of hardness compared to 1.25cr-0.5Mo and 0,5Mo filler metals in the weld metal.

Development of Differential Type Eddy Current Probe for NDT Evaluation of the Steam Generator Tube (증기발생기 전열관의 비파괴 탐상용 차등형 와전류 탐촉자 개발)

  • Jung, S.Y.;Son, D.;Ryu, K.S.;Park, D.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.5
    • /
    • pp.292-297
    • /
    • 2005
  • Steam generator of a nuclear power plant has important rolls for the heat transfer and the isolation of radioactive materials. So bursting of the steam generator tube is directly related to the accident of nuclear power plants. Incone1600 has been used for the steam generator tube material. The material shows non-magnetic and metallic properties, eddy current NDT method has been employed for defects detection. In this work, a differential type of eddy current probe was developed to improve resolution of defect detection. To verify properties of the developed differential type eddy current probe, we have made reference material with SUS304 which has similar magnetic and electrical properties of Inconel600. Using the developed differential type eddy current probe, we can detect defect size of 0.25 mm in diameter and 0.2 mm in depth (volume of $1{\times}10^{-3}\;mm^3$) with the reference material.

High Speed Machining of Difficult-to-cut Material using Ball Endmill (볼 엔드밀을 이용한 난삭재의 고속가공 특성)

  • 손창수;강명창;이득우;김종관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.139-142
    • /
    • 1995
  • Inconel 718 is one of the most difficut workpiece for machining, So it is necessary to evaluate the machining characteristics of Inconel 718 In this study, High speed machining of this material was carried out with Tin coated WC ball endmill and TiN coated HSS ball endmill. The cutting force and shape of machined surface and cip type were investigated according to variation of cutting speed,feed rate and depth of cut

  • PDF

Analysis of Electrochemical Corrosion Resistance of Inconel 625 Thermal Spray Coated Fin Tube of Economizer (Inconel 625 용사코팅된 절탄기 핀튜브의 전기화학적 내식성 분석)

  • Park, Il-Cho;Han, Min-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.187-192
    • /
    • 2021
  • In this study, Inconel 625 was used as a thermal spray material to prevent dew point corrosion damage to the economizer tube, and sealing treatment was performed after applying the arc thermal spray coating technology. Various electrochemical experiments were conducted in the 0.5 wt% sulfuric acid solution to analyze the corrosion resistance of the thermal spray coating (TSC) layer. After the anodic polarization experiment, the degree of corrosion damage was determined through a scanning electron microscope and EDS component analysis. When measuring the open circuit potential, the effect of the sealing treatment was confirmed through stable potential formation of the TSC+sealing treatment (TSC+Sealing). As a result of the anodic polarization experiment, the passivation region was confirmed in TSC and TSC+Sealing, and corrosion resistance was improved as no corrosion damage was observed. In addition, the corrosion resistance of TSC+Sealing was the best when analyzing the corrosion potential and corrosion current density calculated by Tafel analysis.

Development of regenerative scramjet combustor with carbon fiber reinforced ceramic matrix composites (탄소섬유 강화 탄화규소 세라믹 복합소재 초음속 재생냉각 연소기 개발)

  • Kim, Seyoung;Kim, Soohyun;Han, Insub;Woo, Sangkuk;Seong, Younghoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.232-235
    • /
    • 2017
  • Scramjet combustor materials are exposed at ultra high temperature over 2000K and severe erosion environment. Inconel alloys are usually applied for combustor material however its mechanical properties are decreased beyond temperature of 1000K so that is impossible for long term operation and reuse. In this study, fiber reinforced ceramic material was used as scramjet combustor material and its feasibility studied. To increase combustion efficiency, regenerative combustor system developed and channel fabrication in composite material also studied.

  • PDF

A Syudy on the High Temprerties of the 5Layer Functionally Gradient Thermal Barrier Coating (5층열장벽 피막의 고온 물성에 관한연구)

  • Han, J. C.;Jung, C.;Song, Y. S.;Yoon, J. K.;Lo, B. H.;Lee, K. H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.1
    • /
    • pp.12-23
    • /
    • 1998
  • The Thermal Barrier Coating(TBC) has been used to improve the heat barrier and tribological properties of the aircraft engine and the automobile engine in high temperature. Especially, the high temperature tribological propertied of the cylinder haed and the piston crown of diesel engine was emphasized. Therefore, the purpose of this work was to evaluate the microstructure, tribological propeer in high tempearmal shock resistance and bonding strength of five layer functionally gradient TBC for the applications. The five layerwere composed with 100% ceramic insulating later, 75(ceramic):25 (metal) layer, 50:50 layer, 25:75 layer and 100% metal bonding layer to redude the thermal stress. the YSL and MSL poweders were the insulation ceramics powers. The NiCrAly, Inconel625 and SUS powders were the bonding and mixingg powders for plasma spray process. According to the result of high temperature wear test, the wera resistance of YSZ/NiCrAlY siytem was most out standing at 600 and $800^{\circ}C$. At $400^{\circ}C$, the wear resistance of YSZ/Inconel system was better than others. Wear volume at other temperature because of the low temperature degration of zirconia. The thermal shock mechanism of 5 later is the vertical crack gegration in insulating layer. this means that the initial cracks were generated in the top layer, and then developed into the composite layers during thermal shock test. Finally, these cracks werereached to the interface of coating and substrate and also, these vertioal cracks join with the horizontal cracks of the each layers. The bonding strength of YSZ/NiCrAlY and YSZ/Inconel 5 layer system is better than other 5layer systems. The theramal shock resistance of thermal barrier coating s with 5 layer system is better than that of 3 layers and 2 layers.

  • PDF

A Study on Corrosive Characteristics of Inconel 625 for Petroleum Application by FCAW Process (석유시추용 인코넬 625강의 FCAW용접에 의한 부식성에 관한 연구)

  • PARK KEYUNG-DONG;AN DO-KEYUNG;AN JAE-PIL
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.365-369
    • /
    • 2004
  • Recently, Inconel 625 is used widely in offshore processing piping in order to extend the maintenance tenn and improve the quality of anti-corrosion. According to the resistance to attack in various corrosive media at temperatures from $200^{\circ}C$ to aver $1090^{\circ}C$, in combination with good low- and high-temperature mechanical strength. In general, High quality weldments for this material are readily produced by commonly used processes. in recent years, the flux cored arc welding(FCAW) process is becoming more popular due to higher deposition rate and a better weld quality as compared to the shielded metal arc welding (SMAW) process, at the same time, exhibiting equally good weld metal toughness similar to the SAW process. In this study, the weldability and weldment characteristics(mechanical properties and corrosive environment) of Inconel 625 are considered in FCAW weld associated with the several weld shielding gases($80\%Ar\;+\;20\%\;CO_2,\;50\%Ar\;+\;50\%\;CO_2,\;100\%\;CO_2$) in viewpoint of welding productivity.

  • PDF