• 제목/요약/키워드: Inconel material

Search Result 118, Processing Time 0.024 seconds

Gamma and neutron shielding properties of B4C particle reinforced Inconel 718 composites

  • Gokmen, Ugur
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1049-1061
    • /
    • 2022
  • Neutron and gamma-ray shielding properties of Inconel 718 reinforced B4C (0-25 wt%) were investigated using PSD software. Mean free path (MFP), linear and mass attenuation coefficients (LAC,MAC), tenth-value and half-value layers (TVL,HVL), effective atomic number (Zeff), exposure buildup factors (EBF), and fast neutron removal cross-sections (FNRC) values were calculated for 0.015-15 MeV. It was found that MAC and LAC increased with the decrease in the content of B4C compound by weight in Inconel 718. The EBFs were computed using G-P fitting method for 0.015-15 MeV up to the penetration depth of 40 mfp. HVL, TVL, and FNRC values were found to range between 0.018 cm and 3.6 cm, between 2.46 cm and 12.087 cm, and between 0.159 cm-1 and 0.194 cm-1, respectively. While Inconel 718 provides the maximum photon shielding property since it offered the highest values of MAC and Zeff and the lowest value of HVL, Inconel 718 with B4C(25 wt%) was observed to provide the best shielding material for neutron since it offered the highest FNRC value. The study is original in terms of several aspects; moreover, the results of the study may be used in nuclear technology, as well as other technologies including nano and space technologies.

Analysis of Mechanical Properties and Microstructure of Inconel 706 Alloy using Rotary Forging (회전단조에 따른 Inconel 706 합금의 미세조직 및 기계적 특성 분석)

  • H.G. Kim;S.W. Jo;E.Y. Yoon;Y.S. Lee;Y.Y. Woo
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.145-152
    • /
    • 2023
  • The Inconel 706 alloy is a nickel-based super alloy and requires a large load for hot forging due to its excellent mechanical properties at high temperature. Rotary forging process is an innovative metal forging process where workpiece is gradually deformed by the revolving conical upper die with an inclination angle. This process allows that the workpiece is partially in contact with an upper die during the process so that the press force is considerably lower compared with the conventional upsetting process. In this study, experiments of rotary forging process and conventional upsetting process for cylindrical parts using Inconel 706 where conducted to investigate the formability of rotary forging process. And microstructure analysis and mechanical properties of Inconel 706 were performed to investigate the effect of rotary forging process on the material property.

Study on Temperature Effect of Difficulty-to-Cut Material in Laser Heat Treatment Process (레이저 열원을 이용한 난삭재 열처리 공정의 온도 효과에 관한 연구)

  • Kim, Dong Hong;Jung, Dong Won;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.29-33
    • /
    • 2014
  • Recently, Difficult-to-cut materials are used in many manufacturing industry. But the difficult-to-cut materials are difficult-to-cutting process. So difficult to cut material cutting process was used after heat treatment through preheating for easy cutting process. In this study, Inconel 625 was preheating using laser heat source in computer simulation. Laser heat source temperature applied $1290^{\circ}C$ that suitable preheating temperature for Inconel 625. And temperature effects such as temperature distribution for moving heat source studied apply to similar actual process condition. Simulation results for heat treatment effects through temperature distribution verified.

Multiaxial ratcheting behavior of Inconel 718 at elevated temperature (Inconel 718 의 고온 다축피로하중 하에서의 라체팅 거동)

  • Kim, Hyo-Shin;Kim, Kwang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.344-349
    • /
    • 2008
  • Ratcheting behavior of IN 718 was investigated at $649^{\circ}C$ under various proportional and non-proportional loading conditions with stress control. The material response was initially elastic but substantial plastic strain was developed as the material softened cyclically. Ratcheting strain was measured to near fatigue life, and is found to have three stages of development - primary, secondary (steady-state) and tertiary. The secondary stage dominates for most cases. Under the same equivalent stress amplitude and mean stress, it was revealed that circular path loading gives higher ratcheting rates and shorter lives than linear paths and that the more ratcheting occurs when the cyclic load is in the same direction as the mean stress. The ratcheting strain at failure depends not only on its rate but also on fatigue life itself, and it is not a primary life-determining factor.

  • PDF

Thermal Distortion Analysis by Inconel Over-lay at Circular Moonpool Structures (인코넬 육성용접에 의한 원형 문풀구조 선체블록의 열변형해석)

  • Ha, Yun-Sok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.304-311
    • /
    • 2012
  • One of the main features of Drillship or FPSO is a moonpool structure. The moonpool structures have various accuracy tolerances according to their functions and targets. This study is mainly interested in roundness of a circular moonpool structure in FPSO. Because this structure needs abrasion-resistance at which bearing of machine touches on inner wall of moonpool, we should do over-lay welding widely and deeply by using Inconel weld material. But a general over-lay can cause a severe distortion at ship block structure. If we can analyze the roundness by thermal distortion under Inconel over-lay, we can establish a special erection policy by the results. In this study, we designed stress-strain curve for strain-boundary condition analysis by an elasto-plastic material property. The results made us to decide an appropriate ship-block size and policy of crane manipulation will follow for its capacity. If a structure that needs over-lay is not large, solid elements also are not a bad choice for FEM modeling. Therefore we also developed a standard of using strain-boundary method that shell elements are used as over-lay on solid element modeling.

Nd:YAG Laser Cladding of Inconel with Wire Feeding (와이어 공급에 의한 Inconel의 Nd:YAG 레이저 클래딩)

  • Kim, Jae-Do;Bae, Min-Jong;Peng, Yun
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.83-88
    • /
    • 2000
  • Laser cladding processing allows rapid transfer of heat to the material being processed with minimum conduction into base metal, resulting in low total heat input. The effects of Nd:YAG laser cladding with wire feeding on the mechanical properties of Inconel alloy were investigated. inconel alloy is used as the material of nuclear steam generator tubing because of its mechanical properties and corrosion resistance properties. The device for Nd:YAG laser cladding with wire feeding was designed. It consists of the wire feeding system, the wire cladding system and the shielding gas system which prevents the clad layer from being oxidized. Experimental as results indicated that the wire feeding direction and position were important for laser cladding with wire feeding. The wire feeding speed should be adapted according to cladding speed for good shaping of clad layer. The effect of heat on the HAZ size can be limited and the growth of grain size of HAZ size was not serious. The hardness of clad layer and heat affected zone increased with increasing of cladding speed.

  • PDF

The Sliding Wear Behavior of Inconel 600 Mated with SUS 304 (SUS 304에 대한 Inconel 600의 Sliding 마모거동)

  • Kim, Hun;Choi, Jong-Hyun;Kim, Jun-Ki;Park, Ki-Sung;Kim, Seung-Tae;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.841-845
    • /
    • 2001
  • The steam generator tubes of power plant damaged by sliding wear due to flow-induced motion of foreign object. Amount of wear have been predicted by Achard's wear equation until now. However, there are large error and low reliability, because this equation regards wear coefficient(k) as constant. The sliding wears tests have been performed at room temperature to examine parameters of wear (wear distance, contact stress). The steam generator tube material for wear test is used Inconel 600 and foreign object material is used 304 austenite stainless steel. The sliding wear tests show that the amount of wear is not linearly proportional to the wear distance(for 374 austenite stainless steel). According to experimental result, wear coefficient is not constant k but function k(s) of wear distance. The newly modified wear predictive equation V=k(s)F have small error and high reliability.

  • PDF

Evaluation of Ultrasonic Vibration Cutting while Machining Inconel 718

  • Nath, Chandra;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.63-68
    • /
    • 2008
  • Hard and brittle materials, such as Ni- and Ti-based alloys, glass, and ceramics, are very useful in aerospace, marine, electronics, and high-temperature applications because of their extremely versatile mechanical and chemical properties. One Ni-based alloy, Inconel 718, is a precipitation-hardenable material designed with exceptionally high yield strength, ultimate tensile strength, elastic modulus, and corrosion resistance with outstanding weldability and excellent creep-rupture properties at moderately high temperatures. However, conventional machining of this alloy presents a challenge to industry. Ultrasonic vibration cutting (UVC) has recently been used to cut this difficult-to-machine material and obtain a high quality surface finish. This paper describes an experimental study of the UVC parameters for Inconel 718, including the cutting force components, tool wear, chip formation, and surface roughness over a range of cutting conditions. A comparison was also made between conventional turning (CT) and UVC using scanning electron microscopy observations of tool wear. The tool wear measured during UVC at low cutting speeds was lower than CT. UVC resulted in better surface finishes compared to CT under the same cutting conditions. Therefore, UVC performed better than CT at low cutting speeds for all measures compared.

Corrosion Behavior of Superalloys in Hot Molten Salt under Oxidation Atmosphere (고온용융염계 산화분위기에서 초합금의 부식거동)

  • 조수행;임종호;정준호;이원경;오승철;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.285-291
    • /
    • 2004
  • As a part of assessment of the structural material for the molten salt handling system, corrosion behavior of Inconel 718, X-750, Haynes 75 and Haynes 263 alloys in the molten salt of LiCl-Li$_2$O-O$_2$was investigated in the range of temperature; $650^{\circ}C$, time; 24~168h, $Li_2O$; 3wt%, mixed gas; Ar~10%$O_2$. In the molten salt of LiCl-$Li_2O-O_2$, the order corrosion rate was Haynes 263 < Haynes 75 < Inconel X-750 < Inconel 718. Haynes 263 alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of alloys were as fellows: Haynes 75: $Cr_2O_4$, $NiFe_2O_4$, $LiNiO_2$, $Li_2NiFe_2O_4$, Inconel 718; $Cr_2O_4$, $NiFe_2O_4$, Haynes 263; $Li(Ni,Co)O_2$, $NiCr_2O_4$, $LiTiO_2$, Inconel X-750; $Cr_2O_3$, $NiFe_2O_4$,$FeNi_3$, (Al,Nb,Ti)$O_2$. Haynes 263 showed local corrosion behavior and Haynes 75, Inconel 718 and Inconel X-750 showed uniform corrosion behavior.

  • PDF

Searching Optimal Cutting Condition for Surface Roughness In Turning Operation on Inconel 718 using Taguchi Method (다구찌 방법을 이용한 Inconel 718 소재의 선삭가공에서 표면거칠기 최적화)

  • Cha, Jin-Hoon;Han, Sang-Bo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.295-300
    • /
    • 2010
  • Inconel 718 alloy, widely used as material of aircraft engine, has a good mechanical property in high temperature, strong anti-oxidation characteristics in oxidated current over $900^{\circ}C$, and also is not easily digested in the air containing sulfur, therefore, its usage as mechanical component is expanding rapidly. Even though Inconel alloy 718 is difficult to machine, it requires highly precise processing/machining to sustain its component quality of high accuracy. In this paper, general turning operation conditions arc tested to select the best cutting process condition by measuring surface roughness through implementing experiments with orthogonal array of cutting speed, feeding speed and cutting depth as processing parameters based on the Taguchi method. Optimal turning operation conditions are extracted from the proposed experimental models.