• Title/Summary/Keyword: Inconel 738LC

Search Result 4, Processing Time 0.023 seconds

Effects of Palladium Buffer Layer on the Oxidation Resistance of Inconel 738LC Oxidation Resistant Coating Layer by Pt Modified-pack Aluminizing (Inconel 738LC의 Pt Modified-pack Aluminizing 내산화 코팅의 산화저항성에 미치는 Palladium 완충층의 영향)

  • Han W. K.;Choi J. W.;Hong S. J.;Hwang G. H.;Kang S. G.
    • Korean Journal of Materials Research
    • /
    • v.15 no.4
    • /
    • pp.233-239
    • /
    • 2005
  • In this study, the effects of Pd buffer layer on the oxidation resistance of Pt modified-pack aluminized Inconel 738LC, used for gas turbine, were investigated. Pd was electroplated on Inconel 738LC, and Pt was electroplated on the electroplated Pd surface. Thus, the thickness of electroplated Pt/Pd was $10\;{\mu}m$ and the atomic ratio of Pt : Pd was about 6 : 4. After Pt/Pd electroplating, Inconel 738LC was pack aluminized to form the oxidation resistant layer. To investigate the oxidation resistance of Pt/Pd modified-pack aluminized Inconel 738LC, iso-thermal oxidation and cyclic oxidation were performed. The iso-thermal oxdation and the cyclic oxidation data indicated that the Pt/Pd modified-pack aluminized Inconel 738LC was more oxidation resistant than the Pt modified-pack aluminized Inconel 738LC. It was thought that the difference of thermal expansion coefficient between Inconel 738LC and Pt was lowered by the Pd buffer layer.

A Study on the friction weldability of inconel alloy-stainless steel (인코넬 합금과 스테인레스 강의 마찰용접 특성 연구)

  • 김의환;민택기
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.73-78
    • /
    • 2001
  • In this study, the friction weldability and properties of inconel alloy(IN738LC) to stainless steel (STS304) was investigat-ed. Upset length increased according to increment of friction pressure and time. The tensile strength of the friction weld-ing reached 85% of the STS304 base metal strength under the conditions of 8 sec friction time, 50MPa friction pressure and 150 MPa upset pressure. From the result of fracture surface analysis, IN738LC section can be joined with STS 304 materials in shape of a convex lens. Also, the temperature of welded interface was measured with k-type thermocouple. Finally the plastic flow confirmed at the welded interface STS304 by micro test.

  • PDF

A Study on the Small Punch Test Behaviors of Gas Turbine Blades Material Inconel 738LC (가스터빈 블레이드 재질 Inconel 738LC의 소형펀치시험 거동에 관한 연구)

  • Jang, S.H.;Yoo, K.B.;Choi, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.193-198
    • /
    • 2000
  • The small punch test have been developed to evaluate the material strength of the power plant components. This small punch test specimen is very small than the conventional strength test specimens. Korea Electric Power Research Institute (KEPRI) have been applying this test to assess accurately the life of thermal power plant and enhancing the reliability. The small punch test for gas turbine blades is under development. It's possible to compare the relative strength among the same materials having different operation histories. In this paper, the strength reductions of gas turbine materials are investigated by the small punch tests. All materials shows the almost same strength and deformation with the allowable deviation. At the same test temperature, the damaged material has the maximum load value. The strength reduction is not shown in this small punch test results.

  • PDF

The Influence of a Single Melt Pool Morphology on Densification Behavior of Three-Dimensional Structure Fabricated by Additive Manufacturing (적층 가공된 3차원 조형체의 치밀화에 미치는 단일 melt pool 형상의 영향)

  • Choe, Jungho;Yun, Jaecheol;Yang, Dong-Yeol;Yang, Sangsun;Yu, Ji-Hun;Lee, Chang-Woo;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.187-194
    • /
    • 2017
  • Selective laser melting (SLM) can produce a layer of a metal powder and then fabricate a three-dimensional structure by a layer-by-layer method. Each layer consists of several lines of molten metal. Laser parameters and thermal properties of the materials affect the geometric characteristics of the melt pool such as its height, depth, and width. The geometrical characteristics of the melt pool are determined herein by optical microscopy and three-dimensional bulk structures are fabricated to investigate the relationship between them. Powders of the commercially available Fe-based tool steel AISI H13 and Ni-based superalloy Inconel 738LC are used to investigate the effect of material properties. Only the scan speed is controlled to change the laser parameters. The laser power and hatch space are maintained throughout the study. Laser of a higher energy density is seen to melt a wider and deeper range of powder and substrate; however, it does not correspond with the most highly densified three-dimensional structure. H13 shows the highest density at a laser scan speed of 200 mm/s whereas Inconel 738LC shows the highest density at 600 mm/s.