• Title/Summary/Keyword: Incomplete tables

Search Result 13, Processing Time 0.019 seconds

New Wald Test Compared with Chen and Fienberg's for Testing Independence in Incomplete Contingency Tables

  • Kang, Shin-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.1
    • /
    • pp.137-144
    • /
    • 2005
  • In $I{\times}J$ incomplete contingency tables, the test of independence proposed by Chen and Fienberg(1974) uses $I{\times}J-1$ instead of (I-1)(J-1) degrees of freedom without providing much of an increase in the value of the test statistic. For these reasons, Chen and Fienberg tests are expected to have less power. New Wald test statistic related to the part of Chen and Fienberg test statistic is proposed using delta method. These two tests are compared through Monte Carlo studies.

  • PDF

A Bayesian uncertainty analysis for nonignorable nonresponse in two-way contingency table

  • Woo, Namkyo;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1547-1555
    • /
    • 2015
  • We study the problem of nonignorable nonresponse in a two-way contingency table and there may be one or two missing categories. We describe a nonignorable nonresponse model for the analysis of two-way categorical table. One approach to analyze these data is to construct several tables (one complete and the others incomplete). There are nonidentifiable parameters in incomplete tables. We describe a hierarchical Bayesian model to analyze two-way categorical data. We use a nonignorable nonresponse model with Bayesian uncertainty analysis by placing priors in nonidentifiable parameters instead of a sensitivity analysis for nonidentifiable parameters. To reduce the effects of nonidentifiable parameters, we project the parameters to a lower dimensional space and we allow the reduced set of parameters to share a common distribution. We use the griddy Gibbs sampler to fit our models and compute DIC and BPP for model diagnostics. We illustrate our method using data from NHANES III data to obtain the finite population proportions.

MLE for Incomplete Contingency Tables with Lagrangian Multiplier

  • Kang, Shin-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.919-925
    • /
    • 2006
  • Maximum likelihood estimate(MLE) is obtained from the partial log-likelihood function for the cell probabilities of two way incomplete contingency tables proposed by Chen and Fienberg(1974). The partial log-likelihood function is modified by adding lagrangian multiplier that constraints can be incorporated with. Variances of MLE estimators of population proportions are derived from the matrix of second derivatives of the loglikelihood with respect to cell probabilities. Simulation results, when data are missing at random, reveal that Complete-case(CC) analysis produces biased estimates of joint probabilities under MAR and less efficient than either MLE or MI. MLE and MI provides consistent results under either the MAR situation. MLE provides more efficient estimates of population proportions than either multiple imputation(MI) based on data augmentation or complete case analysis. The standard errors of MLE from the proposed method using lagrangian multiplier are valid and have less variation than the standard errors from MI and CC.

  • PDF

Bayesian approach for categorical Table with Nonignorable Nonresponse

  • Choi, Bo-Seung;Park, You-Sung
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.59-65
    • /
    • 2005
  • We propose five Bayesian methods to estimate the cell expectation in an incomplete multi-way categorical table with nonignorable nonresponse mechanism. We study 3 Bayesian methods which were previously applied to one-way categorical tables. We extend them to multi-way tables and, in addition, develop 2 new Bayesian methods for multi-way categorical tables. These five methods are distinguished by different priors on the cell probabilities: two of them have the priors determined only by information of respondents; one has a constant prior; and the remaining two have priors reflecting the difference in the response mechanisms between respondent and non-respondent. We also compare the five Bayesian methods using a categorical data for a prospective study of pregnant women.

  • PDF

Large tests of independence in incomplete two-way contingency tables using fractional imputation

  • Kang, Shin-Soo;Larsen, Michael D.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.4
    • /
    • pp.971-984
    • /
    • 2015
  • Imputation procedures fill-in missing values, thereby enabling complete data analyses. Fully efficient fractional imputation (FEFI) and multiple imputation (MI) create multiple versions of the missing observations, thereby reflecting uncertainty about their true values. Methods have been described for hypothesis testing with multiple imputation. Fractional imputation assigns weights to the observed data to compensate for missing values. The focus of this article is the development of tests of independence using FEFI for partially classified two-way contingency tables. Wald and deviance tests of independence under FEFI are proposed. Simulations are used to compare type I error rates and Power. The partially observed marginal information is useful for estimating the joint distribution of cell probabilities, but it is not useful for testing association. FEFI compares favorably to other methods in simulations.

Estimation of Log-Odds Ratios for Incomplete $2{\times}2$ Tables with Covariates using FEFI

  • Kang, Shin-Soo;Bae, Je-Min
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.185-194
    • /
    • 2007
  • The information of covariates are available to do fully efficient fractional imputation(FEFI). The new method, FEFI with logistic regression is proposed to construct complete contingency tables. Jackknife method is used to get a standard errors of log-odds ratio from the completed table by the new method. Simulation results, when covariates have more information about categorical variables, reveal that the new method provides more efficient estimates of log-odds ratio than either multiple imputation(MI) based on data augmentation or complete case analysis.

  • PDF

Fully Efficient Fractional Imputation for Incomplete Contingency Tables

  • Kang, Shin-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.993-1002
    • /
    • 2004
  • Imputation procedures such as fully efficient fractional imputation(FEFI) or multiple imputation(MI) can be used to construct complete contingency tables from samples with partially classified responses. Variances of FEFI estimators of population proportions are derived. Simulation results, when data are missing completely at random, reveal that FEFI provides more efficient estimates of population than either multiple imputation(MI) based on data augmentation or complete case analysis, but neither FEFI nor MI provides an improvement over complete-case(CC) analysis with respect to accuracy of estimation of some parameters for association between two variables like $\theta_{i+}\theta_{+i}-\theta_{ij}$ and log odds-ratio.

  • PDF

Estimation from Incomplete Data in Multivariate Distributions under Stochastic Ordering (확률적 순서를 갖는 다변량분포에서 불완전자료에 의한 추정)

  • Kwang Mo Jeoung
    • The Korean Journal of Applied Statistics
    • /
    • v.7 no.2
    • /
    • pp.145-157
    • /
    • 1994
  • For multivariate distributions satisfying stochastic ordering, we suggest maximum likelihood estimation with incomplete data via an EM algorithm. In this paper we restrict our attention to the contingency tables with partially cross-classified observations. We may use the existing isotonic regression program to implement EM algorithm, and we illustrate the estimation process through an example.

  • PDF

Sensitivity analysis of missing mechanisms for the 19th Korean presidential election poll survey (19대 대선 여론조사에서 무응답 메카니즘의 민감도 분석)

  • Kim, Seongyong;Kwak, Dongho
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.29-40
    • /
    • 2019
  • Categorical data with non-responses are frequently observed in election poll surveys, and can be represented by incomplete contingency tables. To estimate supporting rates of candidates, the identification of the missing mechanism should be pre-determined because the estimates of non-responses can be changed depending on the assumed missing mechanism. However, it has been shown that it is not possible to identify the missing mechanism when using observed data. To overcome this problem, sensitivity analysis has been suggested. The previously proposed sensitivity analysis can be applicable only to two-way incomplete contingency tables with binary variables. The previous sensitivity analysis is inappropriate to use since more than two of the factors such as region, gender, and age are usually considered in election poll surveys. In this paper, sensitivity analysis suitable to an multi-dimensional incomplete contingency table is devised, and also applied to the 19th Korean presidential election poll survey data. As a result, the intervals of estimates from the sensitivity analysis include actual results as well as estimates from various missing mechanisms. In addition, the properties of the missing mechanism that produce estimates nearest to actual election results are investigated.

Estimating Missing Cells in Contingency Table with IPE (반복비율적합에 의한 다차원 분할표의 결측칸값 추정)

  • 최현집;신상준
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.1
    • /
    • pp.197-206
    • /
    • 2000
  • For estimating missing cells in contingency table, we suggest an iterative method which extends IPF (Iterative Proportional Fitting) method. The suggested m~thod is not restricted by the number and the location of missing cells, and does not distort the given quasi-independency.

  • PDF